Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission
- URL: http://arxiv.org/abs/2203.06492v2
- Date: Mon, 29 May 2023 03:53:04 GMT
- Title: Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission
- Authors: Lunan Sun, Yang Yang, Mingzhe Chen, Caili Guo, Walid Saad and H.
Vincent Poor
- Abstract summary: An adaptive information bottleneck (IB) guided joint source and channel coding (AIB-JSCC) is proposed for image transmission.
The goal of AIB-JSCC is to reduce the transmission rate while improving the image reconstruction quality.
Experimental results show that AIB-JSCC can significantly reduce the required amount of transmitted data and improve the reconstruction quality.
- Score: 132.72277692192878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint source and channel coding (JSCC) for image transmission has attracted
increasing attention due to its robustness and high efficiency. However, the
existing deep JSCC research mainly focuses on minimizing the distortion between
the transmitted and received information under a fixed number of available
channels. Therefore, the transmitted rate may be far more than its required
minimum value. In this paper, an adaptive information bottleneck (IB) guided
joint source and channel coding (AIB-JSCC) method is proposed for image
transmission. The goal of AIB-JSCC is to reduce the transmission rate while
improving the image reconstruction quality. In particular, a new IB objective
for image transmission is proposed so as to minimize the distortion and the
transmission rate. A mathematically tractable lower bound on the proposed
objective is derived, and then, adopted as the loss function of AIB-JSCC. To
trade off compression and reconstruction quality, an adaptive algorithm is
proposed to adjust the hyperparameter of the proposed loss function dynamically
according to the distortion during the training. Experimental results show that
AIB-JSCC can significantly reduce the required amount of transmitted data and
improve the reconstruction quality and downstream task accuracy.
Related papers
- SC-CDM: Enhancing Quality of Image Semantic Communication with a Compact Diffusion Model [27.462224078883786]
We propose a generative SC for wireless image transmission (denoted as SC-CDM)
We aim to redesign the swin Transformer as a new backbone for efficient semantic feature extraction and compression.
We further increase the Peak Signal-to-Noise Ratio (PSNR) by over 17% on top of CNN-based DeepJSCC.
arXiv Detail & Related papers (2024-10-03T01:01:04Z) - Spatial-Contextual Discrepancy Information Compensation for GAN
Inversion [67.21442893265973]
We introduce a novel spatial-contextual discrepancy information compensationbased GAN-inversion method (SDIC)
SDIC bridges the gap in image details between the original image and the reconstructed/edited image.
Our proposed method achieves the excellent distortion-editability trade-off at a fast inference speed for both image inversion and editing tasks.
arXiv Detail & Related papers (2023-12-12T08:58:56Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - A Relay System for Semantic Image Transmission based on Shared Feature
Extraction and Hyperprior Entropy Compression [10.094327559669859]
This paper proposes a relay communication network for semantic image transmission based on shared feature extraction and hyperprior entropy compression.
Experimental results demonstrate that compared with other recent research methods, the proposed system has lower transmission overhead and higher semantic image transmission performance.
arXiv Detail & Related papers (2023-11-17T12:45:30Z) - CommIN: Semantic Image Communications as an Inverse Problem with
INN-Guided Diffusion Models [20.005671042281246]
We propose CommIN, which views the recovery of high-quality source images from degraded reconstructions as an inverse problem.
We show that our CommIN significantly improves the perceptual quality compared to DeepJSCC under extreme conditions.
arXiv Detail & Related papers (2023-10-02T12:06:58Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Perceptual Learned Source-Channel Coding for High-Fidelity Image
Semantic Transmission [7.692038874196345]
In this paper, we introduce adversarial losses to optimize deep J SCC.
Our new deep J SCC architecture combines encoder, wireless channel, decoder/generator, and discriminator.
A user study confirms that achieving the perceptually similar end-to-end image transmission quality, the proposed method can save about 50% wireless channel bandwidth cost.
arXiv Detail & Related papers (2022-05-26T03:05:13Z) - MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution [74.24676600271253]
We propose the MASA network for RefSR, where two novel modules are designed to address these problems.
The proposed Match & Extraction Module significantly reduces the computational cost by a coarse-to-fine correspondence matching scheme.
The Spatial Adaptation Module learns the difference of distribution between the LR and Ref images, and remaps the distribution of Ref features to that of LR features in a spatially adaptive way.
arXiv Detail & Related papers (2021-06-04T07:15:32Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.