Rateless Stochastic Coding for Delay-Constrained Semantic Communication
- URL: http://arxiv.org/abs/2406.19804v2
- Date: Wed, 22 Jan 2025 12:07:13 GMT
- Title: Rateless Stochastic Coding for Delay-Constrained Semantic Communication
- Authors: Cheng Peng, Rulong Wang, Yong Xiao,
- Abstract summary: We consider the problem of joint source-channel coding for semantic communication from a rateless perspective.<n>We propose a more general communication objective that minimizes the perceptual distance by incorporating a semantic-level reconstruction objective.<n>We show that the proposed rateless distortion coding scheme can achieve variable rates of transmission maintaining an excellent trade-off between distortion and perception.
- Score: 5.882972817816777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of joint source-channel coding for semantic communication from a rateless perspective, the purpose of which is to settle the balance between reliability (distortion/perception) and effectiveness (rate) of transmission over uncertain channels. In particular, we propose a more general communication objective that minimizes the perceptual distance by incorporating a semantic-level reconstruction objective in addition to the conventional pixel-level reconstruction objective. Based on the proposed objective, we then propose a novel JSCC coding scheme called rateless stochastic coding (RSC) by introducing a generative decoder and dithered quantization. The coding scheme enables reconstruction based on both distortion and perception metrics through rateless transmission. Extensive experiments demonstrate that the proposed RSC can achieve variable rates of transmission maintaining an excellent trade-off between distortion and perception.
Related papers
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.
Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.
We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.
Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.
We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Vision Transformer-based Semantic Communications With Importance-Aware Quantization [13.328970689723096]
This paper presents a vision transformer (ViT)-based semantic communication system with importance-aware quantization (IAQ) for wireless image transmission.
We show that our IAQ framework outperforms conventional image compression methods in both error-free and realistic communication scenarios.
arXiv Detail & Related papers (2024-12-08T19:24:47Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
We propose an interference-robust semantic communication (IRSC) scheme for general multiple-input multiple-output (MIMO) interference channels.
This scheme involves the development of transceivers based on neural networks (NNs), which integrate channel state information (CSI) either solely at the receiver or at both transmitter and receiver ends.
Experimental results demonstrate that the proposed IRSC scheme effectively learns to mitigate interference and outperforms baseline approaches.
arXiv Detail & Related papers (2024-04-10T11:40:22Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Optimizing state-discrimination receivers for continuous-variable
quantum key distribution over a wiretap channel [1.3108652488669736]
We address a continuous-variable quantum key distribution protocol employing quaternary phase-shift-keying (QPSK) of coherent states.
We consider a pure-loss quantum wiretap channel, in which a possible eavesdropper is limited to collect the sole channel losses.
arXiv Detail & Related papers (2023-06-20T12:26:06Z) - Deep Joint Source-Channel Coding with Iterative Source Error Correction [11.41076729592696]
We propose an iterative source error correction (ISEC) decoding scheme for deep-learning-based joint source-channel code (Deep J SCC)
Given a noisyword received through the channel, we use a Deep J SCC encoder and decoder pair to update the code iteratively.
The proposed scheme produces more reliable source reconstruction results compared to the baseline when the channel noise characteristics do not match the ones used during training.
arXiv Detail & Related papers (2023-02-17T22:50:58Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission [132.72277692192878]
An adaptive information bottleneck (IB) guided joint source and channel coding (AIB-JSCC) is proposed for image transmission.
The goal of AIB-JSCC is to reduce the transmission rate while improving the image reconstruction quality.
Experimental results show that AIB-JSCC can significantly reduce the required amount of transmitted data and improve the reconstruction quality.
arXiv Detail & Related papers (2022-03-12T17:44:02Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z) - SNR-adaptive deep joint source-channel coding for wireless image
transmission [14.793908797250989]
An autoencoder-based novel deep joint source-channel coding scheme is proposed in this paper.
The decoder can estimate the signal-to-noise ratio (SNR) and use it to adaptively decode the transmitted image.
arXiv Detail & Related papers (2021-01-30T10:30:04Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
We consider the scenario in which images are transmitted progressively in layers over time or frequency.
DeepJSCC-$l$ is an innovative solution that uses convolutional autoencoders.
DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes.
arXiv Detail & Related papers (2020-09-26T00:11:50Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
Communication bottleneck has been a critical problem in large-scale deep learning.
We propose a new distributed error feedback (DEF) algorithm, which shows better convergence than error feedback for non-efficient distributed problems.
We also propose DEFA to accelerate the generalization of DEF, which shows better bounds than DEF.
arXiv Detail & Related papers (2020-04-11T03:50:59Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
We propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.
Our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
arXiv Detail & Related papers (2020-04-03T10:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.