論文の概要: AugShuffleNet: Improve ShuffleNetV2 via More Information Communication
- arxiv url: http://arxiv.org/abs/2203.06589v1
- Date: Sun, 13 Mar 2022 07:01:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 14:19:43.200394
- Title: AugShuffleNet: Improve ShuffleNetV2 via More Information Communication
- Title(参考訳): AugShuffleNet: さらなる情報通信によるShuffleNetV2の改善
- Authors: Longqing Ye
- Abstract要約: AugShuffleNetはShuffleNetV2よりも精度が良く、計算コストも少なく、パラメータ数も少ない。
モデル性能を向上させるために, 層間情報通信の高頻度化を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on ShuffleNetV2, we build a more powerful and efficient model family,
termed as AugShuffleNets, by introducing higher frequency of cross-layer
information communication for better model performance. Evaluated on the
CIFAR-10 and CIFAR-100 datasets, AugShuffleNet consistently outperforms
ShuffleNetV2 in terms of accuracy, with less computational cost, fewer
parameter count.
- Abstract(参考訳): ShuffleNetV2をベースとして,AugShuffleNetsと呼ばれるより強力で効率的なモデルファミリを構築した。
CIFAR-10とCIFAR-100のデータセットから評価すると、AugShuffleNetはShuffleNetV2よりも精度が高く、計算コストも少なく、パラメータ数も少ない。
関連論文リスト
- Systematic Architectural Design of Scale Transformed Attention Condenser
DNNs via Multi-Scale Class Representational Response Similarity Analysis [93.0013343535411]
マルチスケールクラス表現応答類似性分析(ClassRepSim)と呼ばれる新しいタイプの分析法を提案する。
ResNetスタイルのアーキテクチャにSTACモジュールを追加すると、最大1.6%の精度が向上することを示す。
ClassRepSim分析の結果は、STACモジュールの効果的なパラメータ化を選択するために利用することができ、競争性能が向上する。
論文 参考訳(メタデータ) (2023-06-16T18:29:26Z) - GPUNet: Searching the Deployable Convolution Neural Networks for GPUs [2.687262067349744]
我々は、レイテンシと精度に影響を与える顕著な要因からなる新しい検索空間を探索する分散NASシステムを構築した。
GPUをターゲットにしているので、NAS最適化モデルをGPUNetと名付けます。
1$ms$以内では、GPUNetはEfficientNet-XやFBNetV3よりも2倍高速で精度が向上している。
論文 参考訳(メタデータ) (2022-04-26T21:48:35Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
そこで本研究では,注文発送のための深層強化学習に基づくソリューションを提案する。
DiDiの配車プラットフォーム上で大規模なオンラインA/Bテストを実施している。
その結果,CVNetは近年提案されているディスパッチ手法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2021-06-08T16:27:04Z) - Adder Neural Networks [75.54239599016535]
我々は、ディープニューラルネットワークにおける大規模な乗算を交換するために、加算器ネットワーク(AdderNets)を提案する。
AdderNetsでは、フィルタと入力特徴の間の$ell_p$-norm距離を出力応答として取ります。
提案したAdderNetsは,ImageNetデータセット上でResNet-50を用いて,75.7%のTop-1精度92.3%のTop-5精度を達成可能であることを示す。
論文 参考訳(メタデータ) (2021-05-29T04:02:51Z) - EfficientNetV2: Smaller Models and Faster Training [91.77432224225221]
本稿では,従来のモデルよりも高速な学習速度とパラメータ効率を有する畳み込みネットワークであるEfficientNetV2を紹介する。
トレーニング対応のニューラルネットワークアーキテクチャ検索とスケーリングを組み合わせて、トレーニング速度とパラメータ効率を共同で最適化します。
実験の結果,EfficientNetV2モデルは最先端モデルよりも最大6.8倍の速度でトレーニングできることがわかった。
論文 参考訳(メタデータ) (2021-04-01T07:08:36Z) - DyNet: Dynamic Convolution for Accelerating Convolutional Neural
Networks [16.169176006544436]
本稿では,画像内容に基づいてコンボリューションカーネルを適応的に生成する動的畳み込み手法を提案する。
MobileNetV3-Small/Largeアーキテクチャに基づいて、DyNetはImageNet上で70.3/77.1%のTop-1精度を達成し、2.9/1.9%改善した。
論文 参考訳(メタデータ) (2020-04-22T16:58:05Z) - Residual Shuffle-Exchange Networks for Fast Processing of Long Sequences [3.8848561367220276]
本稿では,GELUとレイヤ正規化を用いた残差ネットワークに基づくShuffle-Exchangeネットワークの簡易かつ軽量なバージョンを提案する。
提案したアーキテクチャは, より長いシーケンスにスケールするだけでなく, より高速に収束し, 精度も向上する。
LAMBADA言語モデリングタスクのShuffle-Exchangeネットワークを超越し、MusicNetデータセットの最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-04-06T12:44:22Z) - MUXConv: Information Multiplexing in Convolutional Neural Networks [25.284420772533572]
MUXConvは、ネットワーク内のチャンネルと空間情報を段階的に多重化することで、情報の流れを増大させるように設計されている。
ImageNetでは、MUXNetsと呼ばれる結果のモデルが、MobileNetV3のパフォーマンス(75.3%のトップ-1精度)と乗算演算(218M)に一致している。
MUXNetは、転送学習やオブジェクト検出に適応する際にもよく機能する。
論文 参考訳(メタデータ) (2020-03-31T00:09:47Z) - Dynamic Region-Aware Convolution [85.20099799084026]
本稿では,複数のフィルタを対応する空間領域に自動的に割り当てる動的領域認識畳み込み(DRConv)を提案する。
ImageNet分類において、DRConvベースのShuffleNetV2-0.5xは6.3%の相対的な改善と46M乗算加算レベルで67.1%の最先端性能を達成する。
論文 参考訳(メタデータ) (2020-03-27T05:49:57Z) - Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks [9.409651543514615]
この研究は、フィルタ内で定期的に繰り返されるサポートセットを持つ、事前に定義されたスパース2Dカーネルを持つ畳み込みレイヤを導入している。
周期的なスパースカーネルの効率的な保存のため、パラメータの節約はエネルギー効率を大幅に向上させることができる。
論文 参考訳(メタデータ) (2020-01-29T07:10:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。