論文の概要: Set-valued prediction in hierarchical classification with constrained
representation complexity
- arxiv url: http://arxiv.org/abs/2203.06676v1
- Date: Sun, 13 Mar 2022 15:13:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 13:03:12.915032
- Title: Set-valued prediction in hierarchical classification with constrained
representation complexity
- Title(参考訳): 制約付き表現複雑性をもつ階層分類における集合値予測
- Authors: Thomas Mortier, Eyke H\"ullermeier, Krzysztof Dembczy\'nski, Willem
Waegeman
- Abstract要約: 階層的多クラス分類問題に焦点をあて、有効集合が階層の内部ノードに対応する。
我々は3つの手法を提案し、それらをベンチマークデータセット上で評価する。
- 参考スコア(独自算出の注目度): 4.258263831866309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Set-valued prediction is a well-known concept in multi-class classification.
When a classifier is uncertain about the class label for a test instance, it
can predict a set of classes instead of a single class. In this paper, we focus
on hierarchical multi-class classification problems, where valid sets
(typically) correspond to internal nodes of the hierarchy. We argue that this
is a very strong restriction, and we propose a relaxation by introducing the
notion of representation complexity for a predicted set. In combination with
probabilistic classifiers, this leads to a challenging inference problem for
which specific combinatorial optimization algorithms are needed. We propose
three methods and evaluate them on benchmark datasets: a na\"ive approach that
is based on matrix-vector multiplication, a reformulation as a knapsack problem
with conflict graph, and a recursive tree search method. Experimental results
demonstrate that the last method is computationally more efficient than the
other two approaches, due to a hierarchical factorization of the conditional
class distribution.
- Abstract(参考訳): 集合値予測は多クラス分類においてよく知られた概念である。
分類器がテストインスタンスのクラスラベルについて不確かである場合、単一のクラスではなくクラスの集合を予測することができる。
本稿では,階層型マルチクラス分類問題に着目し,有効集合(典型的には)が階層の内部ノードに対応する。
これは非常に強い制約であり、予測された集合に対して表現複雑性の概念を導入することで緩和を提案する。
確率的分類器と組み合わせることで、特定の組合せ最適化アルゴリズムが必要であるという難しい推論問題につながる。
本研究では,行列ベクトル乗法に基づくna\"iveアプローチ,コンフリクトグラフを用いたナップサック問題としての再構成,再帰木探索法という3つの手法を提案する。
実験の結果, 条件クラス分布の階層的分解により, 最後の手法は他の2つの手法よりも計算効率が高かった。
関連論文リスト
- Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
一致したクラス先行は、オラクルの上界性能と強く相関していることを示す。
また,NLPタスクに対するプロンプト設定において,一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2023-09-10T10:57:41Z) - Class-Conditional Conformal Prediction with Many Classes [60.8189977620604]
類似した共形スコアを持つクラスをクラスタ化するクラスタ化共形予測法を提案する。
クラスタ化されたコンフォメーションは、クラス条件カバレッジとセットサイズメトリクスの点で、既存のメソッドよりも一般的に優れています。
論文 参考訳(メタデータ) (2023-06-15T17:59:02Z) - Semi-supervised Predictive Clustering Trees for (Hierarchical) Multi-label Classification [2.706328351174805]
本稿では,予測クラスタリング木の半教師付き学習に基づく階層型マルチラベル分類手法を提案する。
また,この手法をアンサンブル学習に拡張し,ランダムな森林アプローチに基づく手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T12:49:00Z) - Multi-class Classification with Fuzzy-feature Observations: Theory and
Algorithms [36.810603503167755]
我々は,MCIMO(Multi-class classification with Imprecise Observation)と呼ばれる新しい現実的問題に対処する新しい枠組みを提案する。
まず,ファジィラデマッハの複雑性に基づくMCIMO問題の理論的解析を行う。
そこで,提案した課題を解決するために,サポートベクタマシンとニューラルネットワークに基づく2つの実用的なアルゴリズムを構築した。
論文 参考訳(メタデータ) (2022-06-09T07:14:00Z) - Ensemble pruning via an integer programming approach with diversity
constraints [0.0]
本稿では、二項分類問題を考察し、最適部分集合を選択する整数プログラミング(IP)アプローチを提案する。
アンサンブルにおける最小の多様性レベルを確保するための制約も提案する。
本手法は, 文学において最もよく使われている刈り取り法と比較して, 競争力のある結果をもたらす。
論文 参考訳(メタデータ) (2022-05-02T17:59:11Z) - A Top-down Supervised Learning Approach to Hierarchical Multi-label
Classification in Networks [0.21485350418225244]
本稿では,階層型マルチラベル分類(HMC)に対する一般的な予測モデルを提案する。
クラスごとの局所分類器を構築することで教師あり学習により階層的マルチラベル分類に対処するトップダウン分類アプローチに基づいている。
本モデルでは, イネOryza sativa Japonicaの遺伝子機能の予測について事例研究を行った。
論文 参考訳(メタデータ) (2022-03-23T17:29:17Z) - Deep Probabilistic Graph Matching [72.6690550634166]
本稿では,マッチング制約を伴わずに,元のQAPに適合する深層学習ベースのグラフマッチングフレームワークを提案する。
提案手法は,一般的な3つのベンチマーク(Pascal VOC,Wilow Object,SPair-71k)で評価され,すべてのベンチマークにおいて過去の最先端よりも優れていた。
論文 参考訳(メタデータ) (2022-01-05T13:37:27Z) - Multiple Classifiers Based Maximum Classifier Discrepancy for
Unsupervised Domain Adaptation [25.114533037440896]
本稿では、2つの分類器の構造を複数の分類器に拡張し、その性能をさらに向上することを提案する。
平均的に、3つの分類器の構造を採用すると、精度と効率のトレードオフとして最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-02T03:00:13Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
本稿では,二元的ユーザフィードバックから一組のアイテムをクラスタリングする問題について検討する。
最小クラスタ回復誤差率のアルゴリズムを考案する。
適応選択のために,情報理論的誤差下界の導出にインスパイアされたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2019-10-14T09:18:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。