論文の概要: Conformal Prediction in Hierarchical Classification
- arxiv url: http://arxiv.org/abs/2501.19038v1
- Date: Fri, 31 Jan 2025 11:10:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:30.032585
- Title: Conformal Prediction in Hierarchical Classification
- Title(参考訳): 階層型分類におけるコンフォーマル予測
- Authors: Thomas Mortier, Alireza Javanmardi, Yusuf Sale, Eyke Hüllermeier, Willem Waegeman,
- Abstract要約: 分割共形予測フレームワークを階層分類に拡張し、予測セットは予め定義された階層の内部ノードに制限される。
第1のアルゴリズムは予測セットとして内部ノードを返すが、第2のアルゴリズムは複雑さの概念を用いてこの制限を緩和する。
いくつかのベンチマークデータセットの実証評価により,提案アルゴリズムの有効性が示された。
- 参考スコア(独自算出の注目度): 18.730305100193927
- License:
- Abstract: Conformal prediction has emerged as a widely used framework for constructing valid prediction sets in classification and regression tasks. In this work, we extend the split conformal prediction framework to hierarchical classification, where prediction sets are commonly restricted to internal nodes of a predefined hierarchy, and propose two computationally efficient inference algorithms. The first algorithm returns internal nodes as prediction sets, while the second relaxes this restriction, using the notion of representation complexity, yielding a more general and combinatorial inference problem, but smaller set sizes. Empirical evaluations on several benchmark datasets demonstrate the effectiveness of the proposed algorithms in achieving nominal coverage.
- Abstract(参考訳): 分類や回帰作業において有効な予測セットを構築するためのフレームワークとして,コンフォーマル予測が広く利用されている。
本研究では、分割共形予測フレームワークを階層分類に拡張し、予測セットを予め定義された階層の内部ノードに限定し、2つの計算効率の良い推論アルゴリズムを提案する。
第1のアルゴリズムは内部ノードを予測セットとして返し、第2のアルゴリズムは表現複雑性の概念を用いてこの制限を緩和し、より一般的で組合せ的な推論問題をもたらすが、より小さいセットサイズとなる。
いくつかのベンチマークデータセットに対する実証的な評価は、名目上のカバレッジを達成する上で、提案アルゴリズムの有効性を示す。
関連論文リスト
- Conformal Structured Prediction [32.23920437534215]
本稿では,構造予測設定における共形予測のための一般的な枠組みを提案する。
本稿では,提案アルゴリズムを用いて,複数の領域において所望のカバレッジ保証を満たす予測セットを構築する方法について述べる。
論文 参考訳(メタデータ) (2024-10-08T18:56:15Z) - Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
コンフォーマル予測は、有効なカバレッジ保証を備えた予測セットを構築するための強力なフレームワークである。
本稿では,共形予測器の性能向上のために,複数のスコア関数を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-14T14:58:03Z) - Distribution-free Conformal Prediction for Ordinal Classification [0.0]
正規分類は、対象変数がクラスラベル間で自然な順序付けを持つ実アプリケーションで一般的である。
連続的および非連続的な予測セットを構築するための新しい共形予測手法を開発した。
論文 参考訳(メタデータ) (2024-04-25T13:49:59Z) - Conformal prediction set for time-series [16.38369532102931]
不確かさの定量化は複雑な機械学習手法の研究に不可欠である。
我々は,時系列の予測セットを構築するために,ERAPS(Ensemble Regularized Adaptive Prediction Set)を開発した。
ERAPSによる有意な限界被覆と条件被覆を示し、競合する手法よりも予測セットが小さい傾向にある。
論文 参考訳(メタデータ) (2022-06-15T23:48:53Z) - Set-valued prediction in hierarchical classification with constrained
representation complexity [4.258263831866309]
階層的多クラス分類問題に焦点をあて、有効集合が階層の内部ノードに対応する。
我々は3つの手法を提案し、それらをベンチマークデータセット上で評価する。
論文 参考訳(メタデータ) (2022-03-13T15:13:19Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
そこで本研究では,目標予測能力に基づいて参照の関連性を測定し,その関連性を高めるための新しい予測器組合せアルゴリズムを提案する。
提案アルゴリズムはベイズフレームワークを用いて,すべての参照の関連性について共同で評価する。
視覚属性ランキングとマルチクラス分類シナリオから得られた実世界の7つのデータセットの実験に基づいて,本アルゴリズムが性能向上に寄与し,既存の予測器の組み合わせアプローチの適用範囲を広くすることを示した。
論文 参考訳(メタデータ) (2020-07-15T21:58:39Z) - A General Method for Robust Learning from Batches [56.59844655107251]
本稿では,バッチから頑健な学習を行う一般的なフレームワークについて考察し,連続ドメインを含む任意の領域に対する分類と分布推定の限界について考察する。
本手法は,一括分節分類,一括分節,単調,対数凹,ガウス混合分布推定のための,最初の頑健な計算効率の学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-25T18:53:25Z) - A General Framework for Consistent Structured Prediction with Implicit
Loss Embeddings [113.15416137912399]
構造化予測のための理論的・アルゴリズム的な枠組みを提案し,解析する。
問題に対して適切な幾何を暗黙的に定義する、損失関数の大規模なクラスについて検討する。
出力空間を無限の濃度で扱うとき、推定子の適切な暗黙の定式化が重要であることが示される。
論文 参考訳(メタデータ) (2020-02-13T10:30:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。