Algebraic Learning: Towards Interpretable Information Modeling
- URL: http://arxiv.org/abs/2203.06690v1
- Date: Sun, 13 Mar 2022 15:53:39 GMT
- Title: Algebraic Learning: Towards Interpretable Information Modeling
- Authors: Tong Owen Yang
- Abstract summary: This thesis addresses the issue of interpretability in general information modeling and endeavors to ease the problem from two scopes.
Firstly, a problem-oriented perspective is applied to incorporate knowledge into modeling practice, where interesting mathematical properties emerge naturally.
Secondly, given a trained model, various methods could be applied to extract further insights about the underlying system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Along with the proliferation of digital data collected using sensor
technologies and a boost of computing power, Deep Learning (DL) based
approaches have drawn enormous attention in the past decade due to their
impressive performance in extracting complex relations from raw data and
representing valuable information. Meanwhile, though, rooted in its notorious
black-box nature, the appreciation of DL has been highly debated due to the
lack of interpretability. On the one hand, DL only utilizes statistical
features contained in raw data while ignoring human knowledge of the underlying
system, which results in both data inefficiency and trust issues; on the other
hand, a trained DL model does not provide to researchers any extra insight
about the underlying system beyond its output, which, however, is the essence
of most fields of science, e.g. physics and economics.
This thesis addresses the issue of interpretability in general information
modeling and endeavors to ease the problem from two scopes. Firstly, a
problem-oriented perspective is applied to incorporate knowledge into modeling
practice, where interesting mathematical properties emerge naturally which cast
constraints on modeling. Secondly, given a trained model, various methods could
be applied to extract further insights about the underlying system. These two
pathways are termed as guided model design and secondary measurements.
Remarkably, a novel scheme emerges for the modeling practice in statistical
learning: Algebraic Learning (AgLr). Instead of being restricted to the
discussion of any specific model, AgLr starts from idiosyncrasies of a learning
task itself and studies the structure of a legitimate model class. This novel
scheme demonstrates the noteworthy value of abstract algebra for general AI,
which has been overlooked in recent progress, and could shed further light on
interpretable information modeling.
Related papers
- Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches.
We propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap)
We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold.
arXiv Detail & Related papers (2024-05-30T16:04:35Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Looking deeper into interpretable deep learning in neuroimaging: a
comprehensive survey [20.373311465258393]
This paper comprehensively reviews interpretable deep learning models in the neuroimaging domain.
We discuss how multiple recent neuroimaging studies leveraged model interpretability to capture anatomical and functional brain alterations most relevant to model predictions.
arXiv Detail & Related papers (2023-07-14T04:50:04Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.