論文の概要: A Survey on Deep Graph Generation: Methods and Applications
- arxiv url: http://arxiv.org/abs/2203.06714v1
- Date: Sun, 13 Mar 2022 17:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 17:45:06.683702
- Title: A Survey on Deep Graph Generation: Methods and Applications
- Title(参考訳): ディープグラフ生成に関する調査:方法と応用
- Authors: Yanqiao Zhu and Yuanqi Du and Yinkai Wang and Yichen Xu and Jieyu
Zhang and Qiang Liu and Shu Wu
- Abstract要約: グラフ生成は、観測されたグラフに似た分布から新しいグラフを生成することを目的としており、近年のディープラーニングモデルの発展により注目されている。
我々は,グラフ生成の既存文献について,様々な新しい手法から幅広い応用分野への総合的なレビューを行う。
- 参考スコア(独自算出の注目度): 22.713801558059213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are ubiquitous in encoding relational information of real-world
objects in many domains. Graph generation, whose purpose is to generate new
graphs from a distribution similar to the observed graphs, has received
increasing attention thanks to the recent advances of deep learning models. In
this paper, we conduct a comprehensive review on the existing literature of
graph generation from a variety of emerging methods to its wide application
areas. Specifically, we first formulate the problem of deep graph generation
and discuss its difference with several related graph learning tasks. Secondly,
we divide the state-of-the-art methods into three categories based on model
architectures and summarize their generation strategies. Thirdly, we introduce
three key application areas of deep graph generation. Lastly, we highlight
challenges and opportunities in the future study of deep graph generation.
- Abstract(参考訳): グラフは多くのドメインで現実世界のオブジェクトのリレーショナル情報を符号化するのにユビキタスである。
グラフ生成は、観測されたグラフに似た分布から新しいグラフを生成することを目的としており、近年のディープラーニングモデルの発展により注目されている。
本稿では,既存のグラフ生成の文献を,様々な新興手法から幅広い応用分野へ総合的に検討する。
具体的には,まず深層グラフ生成の問題を定式化し,その差異を関連する複数のグラフ学習課題と議論する。
第2に,最先端手法をモデルアーキテクチャに基づく3つのカテゴリに分け,生成戦略を要約する。
第3に,深部グラフ生成の3つの重要な応用分野を紹介する。
最後に、深層グラフ生成の今後の研究における課題と機会を強調します。
関連論文リスト
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
グラフは、包括的なリレーショナルデータをモデル化するために、過去数十年間、ビッグデータとAIで広く使われてきた。
有意義なグラフ法則の同定は、様々な応用の有効性を著しく向上させることができる。
論文 参考訳(メタデータ) (2024-10-16T00:01:31Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
本稿では,グラフ間の効果的な知識伝達パラダイムとしてグラフ領域適応を提案する。
GDAは、ソースグラフとしてタスク関連のグラフを多数導入し、ソースグラフから学習した知識をターゲットグラフに適応させる。
研究状況と課題について概説し、分類学を提案し、代表作の詳細を紹介し、今後の展望について論じる。
論文 参考訳(メタデータ) (2024-02-01T02:44:32Z) - A Comprehensive Survey on Deep Graph Representation Learning [26.24869157855632]
グラフ表現学習は、高次元スパースグラフ構造化データを低次元密度ベクトルに符号化することを目的としている。
従来の手法ではモデル能力に制限があり、学習性能に制限がある。
深層グラフ表現学習は、浅い(伝統的な)方法よりも大きな可能性と利点を示している。
論文 参考訳(メタデータ) (2023-04-11T08:23:52Z) - Curriculum Graph Machine Learning: A Survey [51.89783017927647]
カリキュラムグラフ機械学習(Graph CL)は、グラフ機械学習とカリキュラム学習の強みを統合する。
本稿では,グラフCLのアプローチを概観し,最近の研究動向を概観する。
論文 参考訳(メタデータ) (2023-02-06T16:59:25Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Deep Graph Generators: A Survey [8.641606056228675]
本稿では,深層学習に基づくグラフ生成手法に関する総合的な調査を行う。
それらは、autoregressive、autoencoderベース、rlベース、adversarial、flowベースのグラフジェネレータの5つに分類される。
また、公開ソースコード、一般的に使用されるデータセット、および最も広く使用されている評価指標も提示します。
論文 参考訳(メタデータ) (2020-12-31T11:01:33Z) - A Systematic Survey on Deep Generative Models for Graph Generation [16.546379779385575]
グラフ生成は与えられたグラフの分布を学習し、より新しいグラフを生成する。
グラフ生成のための深部生成モデルの最近の進歩は、生成されたグラフの忠実性を改善するための重要なステップである。
本稿では,グラフ生成のための深部生成モデル分野における文献の概要について概説する。
論文 参考訳(メタデータ) (2020-07-13T20:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。