論文の概要: Parametric Graph Representations in the Era of Foundation Models: A Survey and Position
- arxiv url: http://arxiv.org/abs/2410.12126v1
- Date: Wed, 16 Oct 2024 00:01:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:14.351898
- Title: Parametric Graph Representations in the Era of Foundation Models: A Survey and Position
- Title(参考訳): 基礎モデル時代のパラメトリックグラフ表現:調査と位置
- Authors: Dongqi Fu, Liri Fang, Zihao Li, Hanghang Tong, Vetle I. Torvik, Jingrui He,
- Abstract要約: グラフは、包括的なリレーショナルデータをモデル化するために、過去数十年間、ビッグデータとAIで広く使われてきた。
有意義なグラフ法則の同定は、様々な応用の有効性を著しく向上させることができる。
- 参考スコア(独自算出の注目度): 69.48708136448694
- License:
- Abstract: Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data. When analyzing a graph's statistical properties, graph laws serve as essential tools for parameterizing its structure. Identifying meaningful graph laws can significantly enhance the effectiveness of various applications, such as graph generation and link prediction. Facing the large-scale foundation model developments nowadays, the study of graph laws reveals new research potential, e.g., providing multi-modal information for graph neural representation learning and breaking the domain inconsistency of different graph data. In this survey, we first review the previous study of graph laws from multiple perspectives, i.e., macroscope and microscope of graphs, low-order and high-order graphs, static and dynamic graphs, different observation spaces, and newly proposed graph parameters. After we review various real-world applications benefiting from the guidance of graph laws, we conclude the paper with current challenges and future research directions.
- Abstract(参考訳): グラフは、包括的なリレーショナルデータをモデル化するために、過去数十年間、ビッグデータとAIで広く使われてきた。
グラフの統計的性質を分析する際、グラフ法則はその構造をパラメータ化するための重要なツールとなる。
有意義なグラフ法則の同定は、グラフ生成やリンク予測など、様々なアプリケーションの有効性を著しく向上させることができる。
近年の大規模基盤モデルの発展に直面したグラフ法の研究は、グラフニューラル表現学習のためのマルチモーダル情報を提供し、異なるグラフデータのドメイン不整合を破る新たな研究の可能性を明らかにする。
本調査では,グラフのマクロ顕微鏡と顕微鏡,低次・高次グラフ,静的・動的グラフ,異なる観測空間,新たに提案されたグラフパラメータなど,複数の観点からのグラフ法則の先行研究について概説する。
グラフ法則のガイダンスから得られる様々な実世界の応用をレビューした後、現在の課題と今後の研究方向性をまとめて、論文を締めくくる。
関連論文リスト
- Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis [7.309233340654514]
本稿では,データ操作の観点からグラフのプロンプトを厳密に解析する理論的枠組みを提案する。
グラフ変換演算子に近似する能力を示す形式的保証定理を提供する。
グラフプロンプトによってこれらのデータ操作の誤差の上限を導出し、この議論をグラフのバッチに拡張する。
論文 参考訳(メタデータ) (2024-10-02T15:07:13Z) - Neural Scaling Laws on Graphs [54.435688297561015]
モデルおよびデータの観点から,グラフ上のニューラルスケーリング法則について検討する。
モデルスケーリングでは,スケール法が崩壊する現象を調査し,オーバーフィッティングを潜在的な理由として同定する。
データスケーリングについては、グラフのサイズが極めて不規則であるため、スケーリング法則においてグラフデータのボリュームを効果的に測定することはできないことを示唆する。
論文 参考訳(メタデータ) (2024-02-03T06:17:21Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
本稿では,グラフ間の効果的な知識伝達パラダイムとしてグラフ領域適応を提案する。
GDAは、ソースグラフとしてタスク関連のグラフを多数導入し、ソースグラフから学習した知識をターゲットグラフに適応させる。
研究状況と課題について概説し、分類学を提案し、代表作の詳細を紹介し、今後の展望について論じる。
論文 参考訳(メタデータ) (2024-02-01T02:44:32Z) - Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help
Multiple Graph Applications [38.83545631999851]
大規模グラフコーパス上で事前学習を行うグラフ対応言語モデルのフレームワークを提案する。
Amazonの実際の内部データセットと大規模な公開データセットに関する実験を行います。
論文 参考訳(メタデータ) (2023-06-05T04:46:44Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Graph Learning and Its Advancements on Large Language Models: A Holistic Survey [37.01696685233113]
この調査は、グラフ学習と事前訓練された言語モデルの統合における最新の進歩に焦点を当てる。
グラフ構造の観点から現在の研究を解析し、グラフ学習における最新の応用、トレンド、課題について論じる。
論文 参考訳(メタデータ) (2022-12-17T22:05:07Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。