CheckSel: Efficient and Accurate Data-valuation Through Online
Checkpoint Selection
- URL: http://arxiv.org/abs/2203.06814v1
- Date: Mon, 14 Mar 2022 02:06:52 GMT
- Title: CheckSel: Efficient and Accurate Data-valuation Through Online
Checkpoint Selection
- Authors: Soumi Das, Manasvi Sagarkar, Suparna Bhattacharya, Sourangshu
Bhattacharya
- Abstract summary: We propose a novel 2-phase solution to the problem of data valuation and subset selection.
Phase 1 selects representative checkpoints from an SGD-like training algorithm, which are used in phase-2 to estimate the approximate training data values.
Experimental results show the proposed algorithm outperforms recent baseline methods by up to 30% in terms of test accuracy.
- Score: 3.321404824316694
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data valuation and subset selection have emerged as valuable tools for
application-specific selection of important training data. However, the
efficiency-accuracy tradeoffs of state-of-the-art methods hinder their
widespread application to many AI workflows. In this paper, we propose a novel
2-phase solution to this problem. Phase 1 selects representative checkpoints
from an SGD-like training algorithm, which are used in phase-2 to estimate the
approximate training data values, e.g. decrease in validation loss due to each
training point. A key contribution of this paper is CheckSel, an Orthogonal
Matching Pursuit-inspired online sparse approximation algorithm for checkpoint
selection in the online setting, where the features are revealed one at a time.
Another key contribution is the study of data valuation in the domain
adaptation setting, where a data value estimator obtained using checkpoints
from training trajectory in the source domain training dataset is used for data
valuation in a target domain training dataset. Experimental results on
benchmark datasets show the proposed algorithm outperforms recent baseline
methods by up to 30% in terms of test accuracy while incurring a similar
computational burden, for both standalone and domain adaptation settings.
Related papers
- Neural Dynamic Data Valuation [4.286118155737111]
We propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV)
Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state.
In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states.
arXiv Detail & Related papers (2024-04-30T13:39:26Z) - Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
This paper studies the efficient transferability assessment of pre-trained object detectors.
We build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors.
Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability.
arXiv Detail & Related papers (2024-03-14T14:23:23Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - LAVA: Data Valuation without Pre-Specified Learning Algorithms [20.578106028270607]
We introduce a new framework that can value training data in a way that is oblivious to the downstream learning algorithm.
We develop a proxy for the validation performance associated with a training set based on a non-conventional class-wise Wasserstein distance between training and validation sets.
We show that the distance characterizes the upper bound of the validation performance for any given model under certain Lipschitz conditions.
arXiv Detail & Related papers (2023-04-28T19:05:16Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
A corpus of metrics is designed for measuring the accuracy, robustness, and bounds of algorithms for learning with long-tailed distribution.
Based on our benchmarks, we re-evaluate the performance of existing methods on CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2023-02-03T02:40:54Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Deep Active Learning for Biased Datasets via Fisher Kernel
Self-Supervision [5.352699766206807]
Active learning (AL) aims to minimize labeling efforts for data-demanding deep neural networks (DNNs)
We propose a low-complexity method for feature density matching using self-supervised Fisher kernel (FK)
Our method outperforms state-of-the-art methods on MNIST, SVHN, and ImageNet classification while requiring only 1/10th of processing.
arXiv Detail & Related papers (2020-03-01T03:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.