Neural Dynamic Data Valuation
- URL: http://arxiv.org/abs/2404.19557v3
- Date: Wed, 12 Jun 2024 14:38:48 GMT
- Title: Neural Dynamic Data Valuation
- Authors: Zhangyong Liang, Huanhuan Gao, Ji Zhang,
- Abstract summary: We propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV)
Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state.
In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states.
- Score: 4.286118155737111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data constitute the foundational component of the data economy and its marketplaces. Efficient and fair data valuation has emerged as a topic of significant interest.\ Many approaches based on marginal contribution have shown promising results in various downstream tasks. However, they are well known to be computationally expensive as they require training a large number of utility functions, which are used to evaluate the usefulness or value of a given dataset for a specific purpose. As a result, it has been recognized as infeasible to apply these methods to a data marketplace involving large-scale datasets. Consequently, a critical issue arises: how can the re-training of the utility function be avoided? To address this issue, we propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV). Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state. In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states. Notably, our method requires only training once to estimate the value of all data points, significantly improving the computational efficiency. We conduct comprehensive experiments using different datasets and tasks. The results demonstrate that the proposed NDDV method outperforms the existing state-of-the-art data valuation methods in accurately identifying data points with either high or low values and is more computationally efficient.
Related papers
- A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift.
Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data.
We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness.
arXiv Detail & Related papers (2024-11-23T17:35:23Z) - Data Distribution Valuation [56.71023681599737]
Existing data valuation methods define a value for a discrete dataset.
In many use cases, users are interested in not only the value of the dataset, but that of the distribution from which the dataset was sampled.
We propose a maximum mean discrepancy (MMD)-based valuation method which enables theoretically principled and actionable policies.
arXiv Detail & Related papers (2024-10-06T07:56:53Z) - Data Valuation by Leveraging Global and Local Statistical Information [25.911043100052588]
We show that both global and local value distributions hold significant potential for data valuation within the context of machine learning.
We propose a new data valuation method that estimates Shapley values by incorporating the explored distribution characteristics into an existing method, AME.
We also present a new path to address the dynamic data valuation problem by formulating an optimization problem that integrates information of both global and local value distributions.
arXiv Detail & Related papers (2024-05-23T08:58:08Z) - Data Valuation with Gradient Similarity [1.997283751398032]
Data Valuation algorithms quantify the value of each sample in a dataset based on its contribution or importance to a given predictive task.
We present a simple alternative to existing methods, termed Data Valuation with Gradient Similarity (DVGS)
Our approach has the ability to rapidly and accurately identify low-quality data, which can reduce the need for expert knowledge and manual intervention in data cleaning tasks.
arXiv Detail & Related papers (2024-05-13T22:10:00Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - LAVA: Data Valuation without Pre-Specified Learning Algorithms [20.578106028270607]
We introduce a new framework that can value training data in a way that is oblivious to the downstream learning algorithm.
We develop a proxy for the validation performance associated with a training set based on a non-conventional class-wise Wasserstein distance between training and validation sets.
We show that the distance characterizes the upper bound of the validation performance for any given model under certain Lipschitz conditions.
arXiv Detail & Related papers (2023-04-28T19:05:16Z) - Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value [17.340091573913316]
We propose Data-OOB, a new data valuation method for a bagging model that utilizes the out-of-bag estimate.
Data-OOB takes less than 2.25 hours on a single CPU processor when there are $106$ samples to evaluate and the input dimension is 100.
We demonstrate that the proposed method significantly outperforms existing state-of-the-art data valuation methods in identifying mislabeled data and finding a set of helpful (or harmful) data points.
arXiv Detail & Related papers (2023-04-16T08:03:58Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance.
We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population.
Our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
arXiv Detail & Related papers (2022-11-11T16:48:27Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.