論文の概要: The Multi-Agent Pickup and Delivery Problem: MAPF, MARL and Its
Warehouse Applications
- arxiv url: http://arxiv.org/abs/2203.07092v1
- Date: Mon, 14 Mar 2022 13:23:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 14:36:19.110295
- Title: The Multi-Agent Pickup and Delivery Problem: MAPF, MARL and Its
Warehouse Applications
- Title(参考訳): マルチエージェントピックアップ・デリバリー問題:mapf, marlとその倉庫への応用
- Authors: Tim Tsz-Kit Lau and Biswa Sengupta
- Abstract要約: マルチエージェントピックアップおよび配送問題に対する2つの最先端ソリューションを,異なる原理に基づいて検討した。
具体的には、コンフリクトベースサーチ(CBS)と呼ばれるMAPFアルゴリズムと、共有経験アクター批判(SEAC)と呼ばれる現在のMARLアルゴリズムについて検討する。
- 参考スコア(独自算出の注目度): 2.969705152497174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study two state-of-the-art solutions to the multi-agent pickup and
delivery (MAPD) problem based on different principles -- multi-agent
path-finding (MAPF) and multi-agent reinforcement learning (MARL).
Specifically, a recent MAPF algorithm called conflict-based search (CBS) and a
current MARL algorithm called shared experience actor-critic (SEAC) are
studied. While the performance of these algorithms is measured using quite
different metrics in their separate lines of work, we aim to benchmark these
two methods comprehensively in a simulated warehouse automation environment.
- Abstract(参考訳): マルチエージェント・パスフィンディング(MAPF)とマルチエージェント強化学習(MARL)という,異なる原理に基づいて,マルチエージェント・ピックアップ・デリバリ(MAPD)問題に対する最先端の2つのソリューションについて検討した。
具体的には、コンフリクトベースサーチ(CBS)と呼ばれるMAPFアルゴリズムと、共有経験アクター批判(SEAC)と呼ばれる現在のMARLアルゴリズムについて検討する。
これらのアルゴリズムの性能は,それぞれ異なる作業行数を用いて測定されるが,シミュレーションされた倉庫自動化環境において,これら2つの手法を総合的にベンチマークすることを目的としている。
関連論文リスト
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
主評価指標の基礎に基づいて計算された領域関連メトリクスの範囲を定義する評価プロトコルを導入・指定する。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
論文 参考訳(メタデータ) (2024-07-20T16:37:21Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Ensembling Prioritized Hybrid Policies for Multi-agent Pathfinding [18.06081009550052]
MARL(Multi-Agent Reinforcement Learning)をベースとしたMAPF(Multi-Agent Path Finding)が最近注目されている。
いくつかのMARL-MAPFメソッドは、あるエージェントが知覚できる情報を豊かにするためにコミュニケーションを使用する。
優先度付きハイブリッドポリシ(EPH)を組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-12T11:47:12Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
マルチエージェントパスフィンディング問題は、グラフに閉じ込められたエージェントのグループに対するコンフリクトフリーパスのセットを見つけることである。
本研究では、エージェントが他のエージェントをローカルにのみ観察できる分散MAPF設定に焦点を当てた。
MAPFタスクのための分散マルチエージェントモンテカルロ木探索法を提案する。
論文 参考訳(メタデータ) (2023-12-26T06:57:22Z) - Revisiting Some Common Practices in Cooperative Multi-Agent
Reinforcement Learning [11.91425153754564]
高いマルチモーダルな報酬ランドスケープ、価値分解、パラメータ共有が問題になり、望ましくない結果をもたらす可能性があることを示す。
対照的に、個々のポリシーを持つポリシー勾配(PG)法は、これらの場合において最適解に確実に収束する。
本稿では,多エージェントPGアルゴリズムの実装に関する実践的提案を行う。
論文 参考訳(メタデータ) (2022-06-15T13:03:05Z) - Off-Policy Correction For Multi-Agent Reinforcement Learning [9.599347559588216]
マルチエージェント強化学習(MARL)は、複数の対話エージェントに関わる問題のためのフレームワークを提供する。
単エージェントの場合と明らかに類似しているにもかかわらず、マルチエージェント問題はしばしば、理論的な訓練と解析が困難である。
我々は、V-TraceをMARL設定まで拡張する、新しいオンラインアクター批判アルゴリズムMA-Traceを提案する。
論文 参考訳(メタデータ) (2021-11-22T14:23:13Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
このトピックの過去の発展と現在の傾向から学んだ教訓を示し、その広範な影響について議論します。
最適MAPF解決のための2つの主要なアプローチは、(1)MAPFを直接解決する専用の検索ベース手法、(2)MAPFインスタンスを異なる確立された形式でインスタンスに還元するコンパイルベース手法である。
論文 参考訳(メタデータ) (2021-04-23T20:13:12Z) - Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration
for Mean-Field Reinforcement Learning [135.64775986546505]
我々はマルチエージェント強化学習(MARL)におけるエージェントの対称性を利用する
我々は,平均場MARLを解くMF-FQIアルゴリズムを提案し,MF-FQIアルゴリズムの非漸近解析を確立する。
MF-FQIアルゴリズムは、多くの観測エージェントがMF-FQIアルゴリズムの性能を向上させるという意味で、「多くのエージェントの恵み」を享受する。
論文 参考訳(メタデータ) (2020-06-21T21:45:50Z) - Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
Cooperative Tasks [11.480994804659908]
マルチエージェント深部強化学習(MARL)は、一般的に使われている評価課題や基準の欠如に悩まされている。
我々は,MARLアルゴリズムの3つのクラスを体系的に評価し,比較する。
我々の実験は、異なる学習課題におけるアルゴリズムの期待性能の基準として機能する。
論文 参考訳(メタデータ) (2020-06-14T11:22:53Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
FACtored Multi-Agent Centralized Policy gradients (FACMAC)を提案する。
離散的および連続的な行動空間における協調的マルチエージェント強化学習のための新しい手法である。
我々は,マルチエージェント粒子環境の変動に対するFACMAC,新しいマルチエージェント MuJoCo ベンチマーク,およびStarCraft II マイクロマネジメントタスクの挑戦的セットについて評価した。
論文 参考訳(メタデータ) (2020-03-14T21:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。