Neural Message Passing for Objective-Based Uncertainty Quantification
and Optimal Experimental Design
- URL: http://arxiv.org/abs/2203.07120v4
- Date: Tue, 11 Apr 2023 05:47:05 GMT
- Title: Neural Message Passing for Objective-Based Uncertainty Quantification
and Optimal Experimental Design
- Authors: Qihua Chen, Xuejin Chen, Hyun-Myung Woo, Byung-Jun Yoon
- Abstract summary: We propose a novel scheme to reduce the computational cost for objective-UQ via MOCU based on a data-driven approach.
We show that our proposed approach can accelerate MOCU-based OED by four to five orders of magnitude, without any visible performance loss.
- Score: 15.692012868181635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various real-world scientific applications involve the mathematical modeling
of complex uncertain systems with numerous unknown parameters. Accurate
parameter estimation is often practically infeasible in such systems, as the
available training data may be insufficient and the cost of acquiring
additional data may be high. In such cases, based on a Bayesian paradigm, we
can design robust operators retaining the best overall performance across all
possible models and design optimal experiments that can effectively reduce
uncertainty to enhance the performance of such operators maximally. While
objective-based uncertainty quantification (objective-UQ) based on MOCU (mean
objective cost of uncertainty) provides an effective means for quantifying
uncertainty in complex systems, the high computational cost of estimating MOCU
has been a challenge in applying it to real-world scientific/engineering
problems. In this work, we propose a novel scheme to reduce the computational
cost for objective-UQ via MOCU based on a data-driven approach. We adopt a
neural message-passing model for surrogate modeling, incorporating a novel
axiomatic constraint loss that penalizes an increase in the estimated system
uncertainty. As an illustrative example, we consider the optimal experimental
design (OED) problem for uncertain Kuramoto models, where the goal is to
predict the experiments that can most effectively enhance robust
synchronization performance through uncertainty reduction. We show that our
proposed approach can accelerate MOCU-based OED by four to five orders of
magnitude, without any visible performance loss compared to the
state-of-the-art. The proposed approach applies to general OED tasks, beyond
the Kuramoto model.
Related papers
- QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
This paper concerns the optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) measure is only partially/imperfectly known.
We demonstrate the learning based framework on the uncertainty optimization problem.
We show that the approach can be used to construct maps for the performance certificate and safety in engineering practice.
arXiv Detail & Related papers (2022-12-28T14:30:53Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
Predictive uncertainty supplements model predictions and enables improved functionality of downstream tasks.
We tackle this problem by building upon Monte Carlo Dropout (MCDO) models using the Axolotl framework.
We conduct experiments on (1) a multi-class classification task using the CIFAR10 dataset, and (2) a more complex human body segmentation task.
arXiv Detail & Related papers (2021-11-11T22:24:15Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.