論文の概要: Distraction is All You Need for Fairness
- arxiv url: http://arxiv.org/abs/2203.07593v1
- Date: Tue, 15 Mar 2022 01:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-17 09:45:38.313595
- Title: Distraction is All You Need for Fairness
- Title(参考訳): 気晴らしは 公正に必要なのは
- Authors: Mehdi Yazdani-Jahromi and AmirArsalan Rajabi and Aida Tayebi and Ozlem
Ozmen Garibay
- Abstract要約: 本稿では,予測精度を維持しつつ,公平性を向上する新しい分類アルゴリズムを提案する。
フェアネス文献で提案した6つの最先端手法と比較し、精度を維持しつつバイアスを最小限に抑える点において、モデルがそれらの手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the recent growth in artificial intelligence models and its expanding
role in automated decision making, ensuring that these models are not biased is
of vital importance. There is an abundance of evidence suggesting that these
models could contain or even amplify the bias present in the data on which they
are trained, inherent to their objective function and learning algorithms. In
this paper, we propose a novel classification algorithm that improves fairness,
while maintaining accuracy of the predictions. Utilizing the embedding layer of
a pre-trained classifier for the protected attributes, the network uses an
attention layer to distract the classification from depending on the protected
attribute in its predictions. We compare our model with six state-of-the-art
methodologies proposed in fairness literature, and show that the model is
superior to those methods in terms of minimizing bias while maintaining
accuracy.
- Abstract(参考訳): 近年の人工知能モデルの成長と自動意思決定におけるその役割拡大により、これらのモデルがバイアスを受けないことが極めて重要である。
これらのモデルが、学習対象の関数や学習アルゴリズムに固有の、トレーニング対象のデータに存在しているバイアスを含ませたり、増幅したりできることを示す証拠はたくさんある。
本稿では,予測精度を維持しつつ,公平性を向上させる新しい分類アルゴリズムを提案する。
ネットワークは、保護属性に対する事前学習された分類器の埋め込み層を利用して、保護属性の予測における分類の邪魔をするために注意層を使用する。
フェアネス文献で提案した6つの最先端手法と比較し,精度を維持しつつバイアスを最小限に抑えながら,これらの手法よりも優れていることを示す。
関連論文リスト
- Understanding trade-offs in classifier bias with quality-diversity optimization: an application to talent management [2.334978724544296]
公正なAIモデルを開発する上での大きな課題は、そのようなモデルをトレーニングする上で利用可能なデータのバイアスにある。
本稿では,データセットに固有のバイアスを可視化し,公平性と正確性の間の潜在的なトレードオフを理解する方法を提案する。
論文 参考訳(メタデータ) (2024-11-25T22:14:02Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
Debias and Denoise Attribution (DDA) と呼ばれる新しいトレーニングデータ属性法を導入する。
提案手法は既存のアプローチよりも優れており,平均91.64%のAUCを実現している。
DDAは、様々なソースとLLaMA2、QWEN2、Mistralのような異なるスケールのモデルに対して、強力な汎用性とスケーラビリティを示す。
論文 参考訳(メタデータ) (2024-10-02T07:14:26Z) - Addressing Bias Through Ensemble Learning and Regularized Fine-Tuning [0.2812395851874055]
本稿では,AIモデルのバイアスを取り除くために,複数の手法を用いた包括的アプローチを提案する。
我々は、データ分割、局所訓練、正規化ファインチューニングを通じて、事前訓練されたモデルのカウンターバイアスで複数のモデルを訓練する。
我々は、単一のバイアスのないニューラルネットワークをもたらす知識蒸留を用いて、ソリューションを結論付けている。
論文 参考訳(メタデータ) (2024-02-01T09:24:36Z) - Group Robust Classification Without Any Group Information [5.053622900542495]
この研究は、グループロバストネスに対する現在のバイアス非教師アプローチが、最適なパフォーマンスを達成するためにグループ情報に依存し続けていることを主張する。
バイアスラベルは依然として効果的なモデル選択に不可欠であり、現実のシナリオにおけるこれらの手法の実用性を制限する。
本稿では, 偏りのないモデルに対して, 完全にバイアスのない方法でトレーニングし, 妥当性を検証するための改訂手法を提案する。
論文 参考訳(メタデータ) (2023-10-28T01:29:18Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Does Data Repair Lead to Fair Models? Curating Contextually Fair Data To
Reduce Model Bias [10.639605996067534]
コンテキスト情報は、より優れた表現を学び、精度を向上させるために、ディープニューラルネットワーク(DNN)にとって貴重なキューである。
COCOでは、多くの対象カテゴリーは、男性よりも男性の方がはるかに高い共起性を持ち、男性に有利なDNNの予測を偏見を与える可能性がある。
本研究では, 変動係数を用いたデータ修復アルゴリズムを導入し, 保護されたクラスに対して, 公平かつ文脈的にバランスの取れたデータをキュレートする。
論文 参考訳(メタデータ) (2021-10-20T06:00:03Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。