論文の概要: Efficient Long Sequence Encoding via Synchronization
- arxiv url: http://arxiv.org/abs/2203.07644v1
- Date: Tue, 15 Mar 2022 04:37:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-17 07:03:52.928536
- Title: Efficient Long Sequence Encoding via Synchronization
- Title(参考訳): 同期による高能率長系列符号化
- Authors: Xiangyang Mou, Mo Yu, Bingsheng Yao, Lifu Huang
- Abstract要約: 階層符号化のための同期機構を提案する。
我々のアプローチはまずセグメント間でアンカートークンを識別し、元の入力シーケンスでの役割によってグループ化する。
我々のアプローチは、効率を保ちながらセグメント間のグローバル情報交換を改善することができる。
- 参考スコア(独自算出の注目度): 29.075962393432857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained Transformer models have achieved successes in a wide range of NLP
tasks, but are inefficient when dealing with long input sequences. Existing
studies try to overcome this challenge via segmenting the long sequence
followed by hierarchical encoding or post-hoc aggregation. We propose a
synchronization mechanism for hierarchical encoding. Our approach first
identifies anchor tokens across segments and groups them by their roles in the
original input sequence. Then inside Transformer layer, anchor embeddings are
synchronized within their group via a self-attention module. Our approach is a
general framework with sufficient flexibility -- when adapted to a new task, it
is easy to be enhanced with the task-specific anchor definitions. Experiments
on two representative tasks with different types of long input texts,
NarrativeQA summary setting and wild multi-hop reasoning from HotpotQA,
demonstrate that our approach is able to improve the global information
exchange among segments while maintaining efficiency.
- Abstract(参考訳): 事前訓練されたTransformerモデルは、幅広いNLPタスクで成功しているが、長い入力シーケンスを扱う場合、非効率である。
既存の研究では、長いシーケンスをセグメント化して、階層的エンコーディングやポストホックアグリゲーションによってこの課題を克服しようとしている。
階層符号化のための同期機構を提案する。
まず,各セグメントにまたがるアンカートークンを識別し,元の入力シーケンスでその役割によってグループ化する。
次にTransformer層内のアンカー埋め込みは、自己保持モジュールを介してグループ内で同期される。
私たちのアプローチは、十分な柔軟性を持つ一般的なフレームワークです -- 新しいタスクに適応すると、タスク固有のアンカー定義で簡単に拡張できます。
長い入力文の異なる2つの代表的なタスク、ナラティブカサマリ設定とhotpotqaからのワイルドマルチホップ推論の実験は、効率を維持しながらセグメント間のグローバル情報交換を改善することができることを実証する。
関連論文リスト
- LAIT: Efficient Multi-Segment Encoding in Transformers with
Layer-Adjustable Interaction [31.895986544484206]
変換器(LAIT)における層間相互作用について紹介する。
LAIT内では、セグメント化された入力は、まず独立に符号化され、次に共同で符号化される。
LAITは高い精度を保ちながら、多くのタスクにおけるFLOPの30~50%の注意を減らすことができる。
論文 参考訳(メタデータ) (2023-05-31T06:09:59Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
マルチモーダル特徴の融合と復号を導くために,クロスモーダル・セマンティックスをマイニングする手法を提案する。
具体的には,(1)全周減衰核融合(AF),(2)粗大デコーダ(CFD),(3)多層自己超越からなる新しいネットワークXMSNetを提案する。
論文 参考訳(メタデータ) (2023-05-17T14:30:11Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Shift-Reduce Task-Oriented Semantic Parsing with Stack-Transformers [6.744385328015561]
Apple SiriやAmazon Alexaのようなタスク指向の対話システムは、ユーザの発話を処理し、実行するアクションを理解するために意味解析モジュールを必要とする。
この意味解析コンポーネントは最初、単純なクエリを処理するためのルールベースまたは統計的スロット補完アプローチによって実装された。
本稿では,タスク指向対話のためのニューラル・リデューサ・セマンティック・パーシングの研究を前進させる。
論文 参考訳(メタデータ) (2022-10-21T14:19:47Z) - Pyramid-BERT: Reducing Complexity via Successive Core-set based Token
Selection [23.39962989492527]
BERTのようなトランスフォーマーベースの言語モデルは、様々なNLPタスクで最先端を達成しているが、計算的に禁止されている。
本稿では,従来の使用法を,理論的な結果によって正当化されたemコアセットベースのトークン選択法で置き換えるピラミッド-BERTを提案する。
コアセットベースのトークン選択技術により、高価な事前トレーニングを回避でき、空間効率の良い微調整が可能となり、長いシーケンス長を扱うのに適している。
論文 参考訳(メタデータ) (2022-03-27T19:52:01Z) - Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing [110.4684789199555]
シナリオベースのセマンティックパーシングを導入し、最初に発話の「scenario」を曖昧にする必要がある元のタスクの変種を紹介します。
この定式化により、タスクの粗くきめ細かな側面を分離することが可能となり、それぞれがオフザシェルフニューラルネットワークモジュールで解決される。
私たちのモデルはモジュール化され、差別化可能で、解釈可能で、シナリオから余分な監督を得られるようになります。
論文 参考訳(メタデータ) (2022-02-02T08:00:21Z) - Cross-Thought for Sentence Encoder Pre-training [89.32270059777025]
Cross-Thoughtは、事前トレーニングシーケンスエンコーダに対する新しいアプローチである。
我々は、Transformerベースのシーケンスエンコーダを、多数の短いシーケンスに対してトレーニングする。
質問応答とテキストのエンコーダタスクの実験は、事前学習したエンコーダが最先端のエンコーダより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-07T21:02:41Z) - Cluster-Former: Clustering-based Sparse Transformer for Long-Range
Dependency Encoding [90.77031668988661]
Cluster-Formerはクラスタリングベースの新しいスパーストランスであり、チャンクされたシーケンスにまたがって注意を向ける。
提案されたフレームワークは、Sliding-Window LayerとCluster-Former Layerの2つのユニークなタイプのTransformer Layerにピボットされている。
実験によると、Cluster-Formerはいくつかの主要なQAベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-13T22:09:30Z) - SEAL: Segment-wise Extractive-Abstractive Long-form Text Summarization [39.85688193525843]
入力シーケンス長を最大10万トークン,出力シーケンス長を最大768トークンとするシーケンス・ツー・シーケンスについて検討した。
入力スニペットを動的に抽出・選択し,各出力セグメントに疎通する,新しいエンコーダ・デコーダを特徴とするトランスフォーマーベースモデルSEALを提案する。
SEALモデルは、既存の長文要約タスクの最先端結果を実現し、私たちが導入した新しいデータセット/タスクであるSearch2Wikiにおいて、はるかに長い入力テキストで強力なベースラインモデルより優れている。
論文 参考訳(メタデータ) (2020-06-18T00:13:21Z) - Multi-level Head-wise Match and Aggregation in Transformer for Textual
Sequence Matching [87.97265483696613]
そこで本研究では,複数のレベルにおける頭部のマッチング表現を学習することで,Transformerとのシーケンスペアマッチングを新たに提案する。
実験の結果,提案手法は複数のタスクにおいて新しい最先端性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2020-01-20T20:02:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。