論文の概要: Pyramid-BERT: Reducing Complexity via Successive Core-set based Token
Selection
- arxiv url: http://arxiv.org/abs/2203.14380v1
- Date: Sun, 27 Mar 2022 19:52:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-29 14:10:00.288855
- Title: Pyramid-BERT: Reducing Complexity via Successive Core-set based Token
Selection
- Title(参考訳): Pyramid-BERT: 逐次コアセットに基づくトークン選択による複雑性の低減
- Authors: Xin Huang, Ashish Khetan, Rene Bidart, Zohar Karnin
- Abstract要約: BERTのようなトランスフォーマーベースの言語モデルは、様々なNLPタスクで最先端を達成しているが、計算的に禁止されている。
本稿では,従来の使用法を,理論的な結果によって正当化されたemコアセットベースのトークン選択法で置き換えるピラミッド-BERTを提案する。
コアセットベースのトークン選択技術により、高価な事前トレーニングを回避でき、空間効率の良い微調整が可能となり、長いシーケンス長を扱うのに適している。
- 参考スコア(独自算出の注目度): 23.39962989492527
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformer-based language models such as BERT have achieved the
state-of-the-art performance on various NLP tasks, but are computationally
prohibitive. A recent line of works use various heuristics to successively
shorten sequence length while transforming tokens through encoders, in tasks
such as classification and ranking that require a single token embedding for
prediction. We present a novel solution to this problem, called Pyramid-BERT
where we replace previously used heuristics with a {\em core-set} based token
selection method justified by theoretical results. The core-set based token
selection technique allows us to avoid expensive pre-training, gives a
space-efficient fine tuning, and thus makes it suitable to handle longer
sequence lengths. We provide extensive experiments establishing advantages of
pyramid BERT over several baselines and existing works on the GLUE benchmarks
and Long Range Arena datasets.
- Abstract(参考訳): BERTのようなトランスフォーマーベースの言語モデルは、様々なNLPタスクで最先端のパフォーマンスを達成したが、計算的に禁止されている。
最近の作品では、予測のために単一のトークン埋め込みを必要とする分類やランク付けといったタスクにおいて、エンコーダを通じてトークンを変換しながらシーケンス長を連続的に短縮するために様々なヒューリスティックを使用する。
そこで我々は,従来使用されていたヒューリスティックスを,理論的な結果によって正当化された"em core-set"に基づくトークン選択法に置き換える。
コアセットベースのトークン選択技術は、高価な事前トレーニングを避け、空間効率の良い微調整を可能にし、長いシーケンス長の処理に適している。
いくつかのベースラインにまたがるピラミッドBERTの利点とGLUEベンチマークとLong Range Arenaデータセットに関する既存の研究を実証する広範な実験を行った。
関連論文リスト
- Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - GEC-DePenD: Non-Autoregressive Grammatical Error Correction with
Decoupled Permutation and Decoding [52.14832976759585]
文法的誤り訂正(GEC)は、通常自己回帰的なシーケンス・ツー・シーケンスモデルで解決される重要なNLPタスクである。
本稿では, アーキテクチャを置換ネットワークに分離する, GEC に対する非自己回帰的アプローチを提案する。
GECの既知の非自己回帰手法よりもネットワークが向上することを示す。
論文 参考訳(メタデータ) (2023-11-14T14:24:36Z) - Breaking the Token Barrier: Chunking and Convolution for Efficient Long
Text Classification with BERT [0.0]
変換器ベースのモデル、特にBERTは様々なNLPタスクの研究を推進している。
BERTモデルは512トークンの最大トークン制限に制限されているため、長い入力で実際に適用するのは簡単ではない。
本稿では,任意の事前学習したモデルを任意に長文で推論できるような,比較的単純なBanilla BERTアーキテクチャであるChunkBERTを提案する。
論文 参考訳(メタデータ) (2023-10-31T15:41:08Z) - Efficient Long Sequence Encoding via Synchronization [29.075962393432857]
階層符号化のための同期機構を提案する。
我々のアプローチはまずセグメント間でアンカートークンを識別し、元の入力シーケンスでの役割によってグループ化する。
我々のアプローチは、効率を保ちながらセグメント間のグローバル情報交換を改善することができる。
論文 参考訳(メタデータ) (2022-03-15T04:37:02Z) - Hierarchical Neural Network Approaches for Long Document Classification [3.6700088931938835]
我々は、より効率的な表現を効率よく捉えるために、事前訓練された普遍文(USE)と変換器からの双方向表現(BERT)を階層的に採用する。
提案するモデルは概念的に単純であり,入力データをチャンクに分割し,BERTとUSEのベースモデルに渡す。
USE + CNN/LSTM はスタンドアローンのベースラインよりも優れており、BERT + CNN/LSTM はスタンドアローンのベースラインと同等である。
論文 参考訳(メタデータ) (2022-01-18T07:17:40Z) - Accelerating BERT Inference for Sequence Labeling via Early-Exit [65.7292767360083]
我々は最近成功した早期退避機構を拡張し、シークエンスラベリングタスクに対するPTMの推論を高速化する。
また、異なる層で部分トークンを早期に退避させるトークンレベルの早期退避機構も提案する。
当社のアプローチでは,パフォーマンスの低下を最小限に抑えながら,最大66%~75%の推論コストを削減できる。
論文 参考訳(メタデータ) (2021-05-28T14:39:26Z) - TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference [54.791572981834435]
既存の訓練済み言語モデル(PLM)は推論において計算コストがかかることが多い。
TR-BERT と呼ばれる PLM の推論を高速化する動的トークン削減手法を提案する。
TR-BERTは、トークン削減プロセスを多段階のトークン選択問題として定式化し、強化学習を通じて選択戦略を自動的に学習する。
論文 参考訳(メタデータ) (2021-05-25T02:28:51Z) - Incorporating BERT into Parallel Sequence Decoding with Adapters [82.65608966202396]
本稿では,2種類のBERTモデルをエンコーダとデコーダとして取り出し,シンプルで軽量なアダプタモジュールを導入し,それらを微調整する。
我々は、ソース側およびターゲット側BERTモデルに含まれる情報を協調的に活用できるフレキシブルで効率的なモデルを得る。
我々のフレームワークは、BERTの双方向および条件独立性を考慮した、Mask-Predictという並列シーケンス復号アルゴリズムに基づいている。
論文 参考訳(メタデータ) (2020-10-13T03:25:15Z) - Conformer-Kernel with Query Term Independence for Document Retrieval [32.36908635150144]
Transformer- Kernel (TK) モデルは、TREC Deep Learningベンチマークで強力な再ランク性能を示している。
我々は、クエリ項独立仮定を組み込むことで、TKアーキテクチャを完全な検索設定に拡張する。
コンフォーマーのGPUメモリ要件は入力シーケンス長と線形にスケールすることを示し、長いドキュメントのランク付けにおいてより有効な選択肢であることを示す。
論文 参考訳(メタデータ) (2020-07-20T19:47:28Z) - ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators [108.3381301768299]
Masked Language Modeling (MLM) は、BERT のような事前学習手法で、いくつかのトークンを [MASK] に置き換えて、元のトークンを再構築するためにモデルをトレーニングすることで入力を破損させた。
代用トークン検出という,より効率的な事前学習タスクを提案する。
論文 参考訳(メタデータ) (2020-03-23T21:17:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。