Multipartite High-dimensional Quantum State Engineering via Discrete
Time Quantum Walk
- URL: http://arxiv.org/abs/2212.12164v1
- Date: Fri, 23 Dec 2022 06:06:16 GMT
- Title: Multipartite High-dimensional Quantum State Engineering via Discrete
Time Quantum Walk
- Authors: Junhong Nie, Meng Li, Xiaoming Sun
- Abstract summary: We give two schemes for the engineering task of arbitrary quantum state in $c$-partite $d$-dimensional system.
A concrete example of preparing generalized Bell states is given to demonstrate the first scheme we proposed.
We also show how these schemes can be used to reduce the cost of long-distance quantum communication.
- Score: 8.875659216970327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state engineering, namely the generation and control of arbitrary
quantum states, is drawing more and more attention due to its wide applications
in quantum information and computation. However, there is no general method in
theory, and the existing schemes also depend heavily on the selected
experimental platform. In this manuscript, we give two schemes for the
engineering task of arbitrary quantum state in $c$-partite $d$-dimensional
system, both of which are based on discrete-time quantum walk with a
$2^c$-dimensional time- and position-dependent coin. The first procedure is a
$d$-step quantum walk where all the $d$ coins are non-identity, while the
second procedure is an $O(d)$-step quantum walk where only $O(\log d)$ coins
are non-identity. A concrete example of preparing generalized Bell states is
given to demonstrate the first scheme we proposed. We also show how these
schemes can be used to reduce the cost of long-distance quantum communication
when the particles involved in the system are far away from each other.
Furthermore, the first scheme can be applied to give an alternative approach to
the quantum state preparation problem which is one of the fundamental tasks of
quantum information processing. We design circuits for quantum state
preparation with the help of our quantum state engineering scheme that match
the best current result in both size and depth of the circuit asymptotically.
Related papers
- Efficient implementation of discrete-time quantum walks on quantum computers [0.0]
We propose an efficient and scalable quantum circuit implementing the discrete-time quantum walk (DTQW) model.
For $t$ time-steps of the DTQW, the proposed circuit requires only $O(n2 + nt)$ two-qubit gates compared to the $O(n2 t)$ of the current most efficient implementation.
arXiv Detail & Related papers (2024-02-02T19:11:41Z) - A generalized framework for quantum state discrimination, hybrid
algorithms, and the quantum change point problem [3.4683494246563606]
We present a hybrid quantum-classical algorithm based on semidefinite programming to calculate the maximum reward when the states are pure and have efficient circuits.
We give now-possible algorithms for the quantum change point identification problem which asks, given a sequence of quantum states, determine the time steps when the quantum states changed.
arXiv Detail & Related papers (2023-12-07T03:42:40Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Shallow quantum circuits for efficient preparation of Slater
determinants and correlated states on a quantum computer [0.0]
Fermionic ansatz state preparation is a critical subroutine in many quantum algorithms such as Variational Quantum Eigensolver for quantum chemistry and condensed matter applications.
Inspired by data-loading circuits developed for quantum machine learning, we propose an alternate paradigm that provides shallower, yet scalable $mathcalO(d log2N)$ two-qubit gate depth circuits to prepare such states with d-fermions.
arXiv Detail & Related papers (2023-01-18T12:43:18Z) - Discrete-time Quantum Walks in Qudit Systems [3.452050192629253]
We introduce a first of its kind one-dimensional quantum walk in the $d$-dimensional quantum domain.
We show its equivalence for circuit realization in an arbitrary finite-dimensional quantum logic.
arXiv Detail & Related papers (2022-07-09T18:35:47Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Computational advantage from quantum superposition of multiple temporal
orders of photonic gates [0.0]
A control quantum system can coherently determine the order in which a target quantum system undergoes $N$ gate operations.
We experimentally demonstrate the quantum $N$-switch with $N=4$ gates acting on a photonic-polarization qubit.
This is the first observation of a quantum superposition of more than $N=2$ temporal orders.
arXiv Detail & Related papers (2020-02-18T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.