Neural Solvers for Fast and Accurate Numerical Optimal Control
- URL: http://arxiv.org/abs/2203.08072v1
- Date: Sun, 13 Mar 2022 10:46:50 GMT
- Title: Neural Solvers for Fast and Accurate Numerical Optimal Control
- Authors: Federico Berto, Stefano Massaroli, Michael Poli, Jinkyoo Park
- Abstract summary: This paper provides techniques to improve the quality of optimized control policies given a fixed computational budget.
We achieve the above via a hypersolvers approach, which hybridizes a differential equation solver and a neural network.
- Score: 12.80824586913772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing optimal controllers for dynamical systems often involves solving
optimization problems with hard real-time constraints. These constraints
determine the class of numerical methods that can be applied: computationally
expensive but accurate numerical routines are replaced by fast and inaccurate
methods, trading inference time for solution accuracy. This paper provides
techniques to improve the quality of optimized control policies given a fixed
computational budget. We achieve the above via a hypersolvers approach, which
hybridizes a differential equation solver and a neural network. The performance
is evaluated in direct and receding-horizon optimal control tasks in both low
and high dimensions, where the proposed approach shows consistent Pareto
improvements in solution accuracy and control performance.
Related papers
- Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
We propose a learning-based iterative solver for constrained optimization.
It can obtain very fast and accurate solutions by customizing the solver to a specific parametric optimization problem.
A novel loss function based on the Karush-Kuhn-Tucker conditions of optimality is introduced, enabling fully self-supervised training of both neural networks.
arXiv Detail & Related papers (2024-09-12T14:17:23Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Primal-Dual Contextual Bayesian Optimization for Control System Online
Optimization with Time-Average Constraints [21.38692458445459]
This paper studies the problem of online performance optimization of constrained closed-loop control systems.
A primal-dual contextual Bayesian optimization algorithm is proposed that achieves sublinear cumulative regret with respect to the dynamic optimal solution.
arXiv Detail & Related papers (2023-04-12T18:37:52Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
We propose a new high dimensional Bayesian Optimization algorithm combining Recurrent neural networks.
The proposed RNN-BO algorithm can solve the optimal control problems in the lower dimension space.
We also discuss the impacts of different numbers of the RNN layers and training epochs on the trade-off between solution quality and related computational efforts.
arXiv Detail & Related papers (2022-01-01T08:40:17Z) - Continuation Path with Linear Convergence Rate [18.405645120971496]
Path-following algorithms are frequently used in composite optimization problems where a series of subproblems are solved sequentially.
We present a primal dual analysis of the path-following algorithm as well as determining how accurately each subproblem should be solved to guarantee a linear convergence rate on a target problem.
Considering optimization with a sparsity-inducing penalty, we analyze the change of the active sets with respect to the regularization parameter.
arXiv Detail & Related papers (2021-12-09T18:42:13Z) - Neural Predictive Control for the Optimization of Smart Grid Flexibility
Schedules [0.0]
Model predictive control (MPC) is a method to formulate the optimal scheduling problem for grid flexibilities in a mathematical manner.
MPC methods promise accurate results for time-constrained grid optimization but they are inherently limited by the calculation time needed for large and complex power system models.
A Neural Predictive Control scheme is proposed to learn optimal control policies for linear and nonlinear power systems through imitation.
arXiv Detail & Related papers (2021-08-19T15:12:35Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.