Neural Predictive Control for the Optimization of Smart Grid Flexibility
Schedules
- URL: http://arxiv.org/abs/2108.08739v1
- Date: Thu, 19 Aug 2021 15:12:35 GMT
- Title: Neural Predictive Control for the Optimization of Smart Grid Flexibility
Schedules
- Authors: Steven de Jongh, Sina Steinle, Anna Hlawatsch, Felicitas Mueller,
Michael Suriyah, Thomas Leibfried
- Abstract summary: Model predictive control (MPC) is a method to formulate the optimal scheduling problem for grid flexibilities in a mathematical manner.
MPC methods promise accurate results for time-constrained grid optimization but they are inherently limited by the calculation time needed for large and complex power system models.
A Neural Predictive Control scheme is proposed to learn optimal control policies for linear and nonlinear power systems through imitation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model predictive control (MPC) is a method to formulate the optimal
scheduling problem for grid flexibilities in a mathematical manner. The
resulting time-constrained optimization problem can be re-solved in each
optimization time step using classical optimization methods such as Second
Order Cone Programming (SOCP) or Interior Point Methods (IPOPT). When applying
MPC in a rolling horizon scheme, the impact of uncertainty in forecasts on the
optimal schedule is reduced. While MPC methods promise accurate results for
time-constrained grid optimization they are inherently limited by the
calculation time needed for large and complex power system models. Learning the
optimal control behaviour using function approximation offers the possibility
to determine near-optimal control actions with short calculation time. A Neural
Predictive Control (NPC) scheme is proposed to learn optimal control policies
for linear and nonlinear power systems through imitation. It is demonstrated
that this procedure can find near-optimal solutions, while reducing the
calculation time by an order of magnitude. The learned controllers are
validated using a benchmark smart grid.
Related papers
- Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids [14.389086937116582]
This work proposes an approach that integrates reinforcement learning and model predictive control (MPC) to solve optimal control problems in mixed-logical dynamical systems.
The proposed method significantly reduces the online computation time of the MPC approach and that it generates policies with small optimality gaps and high feasibility rates.
arXiv Detail & Related papers (2024-09-17T15:17:16Z) - Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks [0.0]
We propose a proposed machine-learning supported approach to model predictive control.
We propose approximating part of the problem horizon, while maintaining safety guarantees.
The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response.
arXiv Detail & Related papers (2024-08-19T08:13:37Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - SOMTP: Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics [13.129654942805846]
Model Predictive Control (MP)-based trajectory planning has been widely used in, and Control Barrier (CBF) can improve its constraints.
In this paper, we propose a self-supervised learning algorithm for CBF-MPC trajectory planning.
arXiv Detail & Related papers (2024-05-15T09:38:52Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Neural Solvers for Fast and Accurate Numerical Optimal Control [12.80824586913772]
This paper provides techniques to improve the quality of optimized control policies given a fixed computational budget.
We achieve the above via a hypersolvers approach, which hybridizes a differential equation solver and a neural network.
arXiv Detail & Related papers (2022-03-13T10:46:50Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - Recurrent Model Predictive Control [19.047059454849897]
We propose an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems.
Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs.
arXiv Detail & Related papers (2021-02-23T15:01:36Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.