論文の概要: Measuring the Impact of (Psycho-)Linguistic and Readability Features and
Their Spill Over Effects on the Prediction of Eye Movement Patterns
- arxiv url: http://arxiv.org/abs/2203.08085v1
- Date: Tue, 15 Mar 2022 17:13:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 14:56:27.267335
- Title: Measuring the Impact of (Psycho-)Linguistic and Readability Features and
Their Spill Over Effects on the Prediction of Eye Movement Patterns
- Title(参考訳): 眼球運動パターンの予測における(精神医学的)言語的, 可読性的特徴とその流出の影響の測定
- Authors: Daniel Wiechmann, Yu Qiao, Elma Kerz, Justus Mattern
- Abstract要約: 本稿では,2つの視線追跡コーパスと2つの言語モデル(BERTとGPT-2)について報告する。
あらゆる実験において,人間の読解行動を予測するための幅広い特徴(音韻的複雑性,語彙的富度,レジスタベース多語の組み合わせ,可読性,心理言語的単語特性)の効果を検証した。
本実験は, トランスフォーマーに基づく言語モデルの特徴とアーキテクチャの両方が, 自然視読影時の複数の視線追跡指標を予測する役割を担っていることを示す。
- 参考スコア(独自算出の注目度): 27.799032561722893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a growing interest in the combined use of NLP and machine learning
methods to predict gaze patterns during naturalistic reading. While promising
results have been obtained through the use of transformer-based language
models, little work has been undertaken to relate the performance of such
models to general text characteristics. In this paper we report on experiments
with two eye-tracking corpora of naturalistic reading and two language models
(BERT and GPT-2). In all experiments, we test effects of a broad spectrum of
features for predicting human reading behavior that fall into five categories
(syntactic complexity, lexical richness, register-based multiword combinations,
readability and psycholinguistic word properties). Our experiments show that
both the features included and the architecture of the transformer-based
language models play a role in predicting multiple eye-tracking measures during
naturalistic reading. We also report the results of experiments aimed at
determining the relative importance of features from different groups using
SP-LIME.
- Abstract(参考訳): NLPと機械学習の併用による自然主義的読書における視線パターンの予測への関心が高まっている。
トランスフォーマーに基づく言語モデルを用いて有望な結果が得られたが、それらのモデルの性能と一般的なテキスト特性を関連付ける作業はほとんど行われていない。
本稿では,2つの視線追跡コーパスと2つの言語モデル(BERTとGPT-2)による実験について報告する。
あらゆる実験において,人間の読解行動を予測するための幅広い特徴(音韻的複雑性,語彙的富度,レジスタベース多語の組み合わせ,可読性,心理言語的単語特性)の効果を検証した。
本実験は, トランスフォーマーに基づく言語モデルの特徴とアーキテクチャの両方が, 自然視読影時の複数の視線追跡指標を予測する役割を担っていることを示す。
また,SP-LIMEを用いて,異なるグループからの特徴の相対的重要性を決定する実験結果を報告する。
関連論文リスト
- From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding [7.5348062792]
本稿では,共起変数をテキストで表現する場合のメタラーナーの性能について検討する。
共同創設者の事前学習したテキスト表現を用いた学習者は,CATE推定精度の向上を図っている。
テキスト埋め込みの絡み合った性質のため、これらのモデルは、完全な共同創設者の知識を持つメタ学習者のパフォーマンスと完全には一致しない。
論文 参考訳(メタデータ) (2024-09-23T19:46:19Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - When to generate hedges in peer-tutoring interactions [1.0466434989449724]
この研究は、自然言語のターン、会話戦略、学習戦略、非言語行動に注釈を付けた、自然主義的な対面データセットを使用している。
その結果、前のターンのセマンティック情報をキャプチャする埋め込み層は、モデルの性能を著しく向上させることがわかった。
教師の視線とタテの視線がヘッジ予測に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2023-07-28T14:29:19Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Naturalistic Causal Probing for Morpho-Syntax [76.83735391276547]
スペインにおける実世界のデータに対する入力レベルの介入に対する自然主義的戦略を提案する。
提案手法を用いて,共同設立者から文章中の形態・症状の特徴を抽出する。
本研究では,事前学習したモデルから抽出した文脈化表現に対する性別と数字の因果効果を解析するために,本手法を適用した。
論文 参考訳(メタデータ) (2022-05-14T11:47:58Z) - Pushing on Personality Detection from Verbal Behavior: A Transformer
Meets Text Contours of Psycholinguistic Features [27.799032561722893]
テキストデータから人格特性を予測する上で,2つの大きな改善点を報告する。
精神言語学的特徴のテキスト内分布を学習した,事前学習型トランスフォーマー言語モデルBERTと双方向長短期記憶ネットワークを統合した。
2つのベンチマークデータセット上に構築したモデルの性能を評価する。
論文 参考訳(メタデータ) (2022-04-10T08:08:46Z) - Leveraging recent advances in Pre-Trained Language Models
forEye-Tracking Prediction [0.0]
Natural Language Pro-cessingは、視線追跡データなどの人間由来の行動データを使用してニューラルネットを強化し、構文とセマンティクスにまたがるさまざまなタスクを解決する。
本稿では、ZuCo 1.0とZuCo 2.0データセットを用いて、異なる言語モデルを探り、各単語について、その意味について、これらの用語の特徴を直接予測する。
論文 参考訳(メタデータ) (2021-10-09T06:46:48Z) - Predicting the Reproducibility of Social and Behavioral Science Papers
Using Supervised Learning Models [21.69933721765681]
本論文では,学術研究から5種類の特徴を抽出し,公開研究クレームの評価を支援するフレームワークを提案する。
個々の特徴と人間評価の基底真理ラベルのセットを予測するための重要性のペアワイズ相関を分析します。
論文 参考訳(メタデータ) (2021-04-08T00:45:20Z) - Composed Variational Natural Language Generation for Few-shot Intents [118.37774762596123]
現実的な不均衡シナリオにおいて、数ショットのインテントに対するトレーニング例を生成します。
生成した発話の質を評価するために、一般化された複数ショット意図検出タスクについて実験を行った。
提案モデルでは,2つの実世界の意図検出データセットに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-09-21T17:48:43Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
我々は、バイト埋め込みと畳み込み層に基づく繰り返しニューラルネットワーク予測器を構築する。
様々な言語型の特徴を確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-04-30T21:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。