論文の概要: Energy-Latency Attacks via Sponge Poisoning
- arxiv url: http://arxiv.org/abs/2203.08147v5
- Date: Fri, 18 Apr 2025 12:28:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 00:14:04.352598
- Title: Energy-Latency Attacks via Sponge Poisoning
- Title(参考訳): スポンジ中毒によるエネルギーレイテンシー攻撃
- Authors: Antonio Emanuele Cinà, Ambra Demontis, Battista Biggio, Fabio Roli, Marcello Pelillo,
- Abstract要約: スポンジの例は、ハードウェアアクセラレータにデプロイされたディープネットワークのエネルギー消費と予測レイテンシを向上させるために最適化されたテスト時間入力である。
我々はスポンジ中毒(sponge poisoning)と呼ばれる新しい訓練時間攻撃を提案し、分類精度に影響を与えることなく、任意のテスト入力上でのニューラルネットワークのエネルギー消費と予測遅延を悪化させることを目的としている。
- 参考スコア(独自算出の注目度): 21.06661263745426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.
- Abstract(参考訳): スポンジの例は、ハードウェアアクセラレータにデプロイされたディープネットワークのエネルギー消費と予測レイテンシを向上させるために最適化されたテスト時間入力である。
分類中に活性化されるニューロンの割合を増やすことで、これらの攻撃はネットワークアクティベーションパターンの間隔を減少させ、ハードウェアアクセラレーションの性能を悪化させる。
本研究では,スポンジ中毒(sponge poisoning)と呼ばれる新たな訓練時間攻撃を提案する。これは,分類精度に影響を与えることなく,任意のテスト入力上でのニューラルネットワークのエネルギー消費と予測遅延を改善することを目的としている。
モデルトレーニングが信頼できないサードパーティにアウトソースされる場合や、フェデレートされた学習を通じて配布される場合などです。
画像分類タスクに関する広範な実験は、スポンジ中毒が有効であること、そして、スポンジ中毒を修復するための微調整されたモデルが、ほとんどのユーザーにとって違法なコストをもたらすことを示し、スポンジ中毒に対処することが未解決の問題であることを強調している。
関連論文リスト
- The Impact of Uniform Inputs on Activation Sparsity and Energy-Latency Attacks in Computer Vision [4.45482419850721]
研究者は最近、ニューラルネットワークのエネルギー消費と決定レイテンシを高めるために、攻撃者が推論時にいわゆるスポンジ例を計算し、提出できることを実証した。
コンピュータビジョンでは、提案された戦略は、計算の高速化に使用可能なアクティベーションの間隔を小さくして入力を作成する。
均一な画像、すなわち、主に平坦で均一に色のついた表面を持つ画像は、畳み込み、バッチ正規化、ReLUアクティベーションの特定の相互作用により、より多くのアクティベーションをトリガーする。
論文 参考訳(メタデータ) (2024-03-27T14:11:23Z) - Diffusion Denoising as a Certified Defense against Clean-label Poisoning [56.04951180983087]
本稿では,市販の拡散モデルを用いて,改ざんしたトレーニングデータを浄化する方法を示す。
7件のクリーンラベル中毒に対する我々の防御を広範囲に検証し、その攻撃成功率を0-16%に抑え、テスト時間の精度は無視できない程度に低下した。
論文 参考訳(メタデータ) (2024-03-18T17:17:07Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Energy-Latency Attacks to On-Device Neural Networks via Sponge Poisoning [5.346606291026528]
ストリーミングと一貫した推論シナリオをシミュレートするオンデバイススポンジ中毒攻撃パイプラインを提案する。
プロセッサとオンデバイスネットワークによる排他的実験分析は、スポンジ中毒攻撃が現代のプロセッサを効果的に汚染することを示している。
我々は、デバイス上でのディープラーニングアプリケーションに対する攻撃を防止するための防御機構の改善の必要性を強調した。
論文 参考訳(メタデータ) (2023-05-06T01:20:30Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - Amplifying Membership Exposure via Data Poisoning [18.799570863203858]
本稿では,データ中毒の第3タイプについて検討し,良心的トレーニングサンプルのプライバシー漏洩リスクを高めることを目的とした。
そこで本研究では,対象クラスの加入者への露出を増幅するために,データ中毒攻撃のセットを提案する。
この結果から,提案手法は,テスト時間モデルの性能劣化を最小限に抑えることで,メンバーシップ推定精度を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-01T13:52:25Z) - AntidoteRT: Run-time Detection and Correction of Poison Attacks on
Neural Networks [18.461079157949698]
画像分類ネットワークに対する バックドア毒殺攻撃
本稿では,毒殺攻撃に対する簡易な自動検出・補正手法を提案する。
我々の手法は、一般的なベンチマークにおいて、NeuralCleanseやSTRIPといった既存の防御よりも優れています。
論文 参考訳(メタデータ) (2022-01-31T23:42:32Z) - Indiscriminate Poisoning Attacks Are Shortcuts [77.38947817228656]
その結果, 標的ラベルを付与した場合, 進行性毒素攻撃の摂動は, ほぼ分離可能であることがわかった。
このような合成摂動は、故意に作られた攻撃と同じくらい強力であることを示す。
我々の発見は、アンフショートカット学習の問題が以前考えられていたよりも深刻であることを示唆している。
論文 参考訳(メタデータ) (2021-11-01T12:44:26Z) - FooBaR: Fault Fooling Backdoor Attack on Neural Network Training [5.639451539396458]
ニューラルネットワークのトレーニングフェーズ中に障害を注入することで,新たな攻撃パラダイムを探索する。
このような攻撃は、トレーニングフェーズの障害攻撃がネットワークにバックドアを注入し、攻撃者が不正な入力を生成できるようにするような、不正なバックドアと呼ばれる。
論文 参考訳(メタデータ) (2021-09-23T09:43:19Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
我々は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを示します。
我々の研究は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを検証する。
論文 参考訳(メタデータ) (2021-06-18T08:29:53Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
インスタンスターゲット中毒攻撃におけるPAC学習性と認証について検討する。
敵の予算がサンプルの複雑さに比例してスケールすると、PACの学習性と認定が達成可能であることを示す。
実データセット上でのK近傍, ロジスティック回帰, 多層パーセプトロン, 畳み込みニューラルネットワークの堅牢性を実証的に検討する。
論文 参考訳(メタデータ) (2021-05-18T17:48:15Z) - DeepPoison: Feature Transfer Based Stealthy Poisoning Attack [2.1445455835823624]
DeepPoisonは、1つの発電機と2つの識別器の斬新な敵対ネットワークです。
DeepPoisonは最先端の攻撃成功率を91.74%まで達成できる。
論文 参考訳(メタデータ) (2021-01-06T15:45:36Z) - Weight Poisoning Attacks on Pre-trained Models [103.19413805873585]
本研究は, バックドアを微調整した後に, バックドアを露出する脆弱性を伴って, 事前訓練した重量を注入した場合に, 重量中毒を発生させることが可能であることを示す。
感情分類,毒性検出,スパム検出に関する実験により,この攻撃は広く適用可能であり,深刻な脅威となることが示された。
論文 参考訳(メタデータ) (2020-04-14T16:51:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。