The resistance of quantum entanglement to temperature in the
Kugel-Khomskii model
- URL: http://arxiv.org/abs/2203.08254v2
- Date: Sun, 5 Jun 2022 17:38:57 GMT
- Title: The resistance of quantum entanglement to temperature in the
Kugel-Khomskii model
- Authors: V.E. Valiulin, A.V. Mikheyenkov, N.M. Chtchelkatchev, and K.I.Kugel
- Abstract summary: The Kugel--Khomskii model with entangled spin and orbital degrees of freedom is a good testing ground for quantum information processing.
Here, we demonstrate that the entanglement can be also robust under effect of temperature within a wide range of parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Kugel--Khomskii model with entangled spin and orbital degrees of freedom
is a good testing ground for many important features in quantum information
processing, such as robust gaps in the entanglement spectra. Here, we
demonstrate that the entanglement can be also robust under effect of
temperature within a wide range of parameters. It is shown, in particular, that
the temperature dependence of entanglement often exhibits a nonmonotonic
behavior. Namely, there turn out to be ranges of the model parameters, where
entanglement is absent at zero temperature, but then, with an increase in
temperature, it appears, passes through a maximum, and again vanishes.
Related papers
- On the Measurement of the Unruh Effect Through Extended Quantum Thermometers [0.0]
The Unruh effect, predicting a thermal reservoir for accelerating systems, calls for a more refined understanding of measurement processes involving quantum systems as thermometers.
We propose a refined thermometer model incorporating a spin-1/2 particle where the spin acts as a temperature indicator.
arXiv Detail & Related papers (2024-06-13T12:51:45Z) - Finite-temperature Rydberg arrays: quantum phases and entanglement characterization [0.0]
We develop a network-based numerical toolbox for constructing the quantum many-body states at thermal equilibrium.
We numerically confirm that a conformal scaling law of entanglement extends from the zero-temperature critical points into the low-temperature regime.
arXiv Detail & Related papers (2024-05-28T18:00:03Z) - Temperature-Enhanced Critical Quantum Metrology [0.0]
We show that the performance of critical quantum metrology protocols can be enhanced by finite temperature.
We consider a toy-model squeezing Hamiltonian, the Lipkin-Meshkov-Glick model and the paradigmatic Ising model.
arXiv Detail & Related papers (2023-12-07T09:53:58Z) - Temperature dependence of energy transport in the $\mathbb{Z}_3$ chiral clock model [0.0]
We study energy transport within the non-integrable regime of the one-dimensional $mathbbZ_3$ chiral clock model.
We extract the transport coefficients of the model at relatively high temperatures above both its gapless and gapped low-temperature phases.
Although we are not yet able to reach temperatures where quantum critical scaling would be observed, our approach is able to access the transport properties of the model.
arXiv Detail & Related papers (2023-10-31T18:00:30Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Modeling temperature-dependent population dynamics in the excited state
of the nitrogen-vacancy center in diamond [0.0]
The nitrogen-vacancy center in diamond has a temperature range from near zero to over 600 K.
Despite its prominence, the NV center's photo-physics is incompletely understood.
We present a rate model able to describe the cross-over from the low-temperature to the high-temperature regime.
arXiv Detail & Related papers (2023-04-05T15:42:38Z) - Long Horizon Temperature Scaling [90.03310732189543]
Long Horizon Temperature Scaling (LHTS) is a novel approach for sampling from temperature-scaled joint distributions.
We derive a temperature-dependent LHTS objective, and show that finetuning a model on a range of temperatures produces a single model capable of generation with a controllable long horizon temperature parameter.
arXiv Detail & Related papers (2023-02-07T18:59:32Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.