Pre-Trained Multilingual Sequence-to-Sequence Models: A Hope for
Low-Resource Language Translation?
- URL: http://arxiv.org/abs/2203.08850v1
- Date: Wed, 16 Mar 2022 18:15:17 GMT
- Title: Pre-Trained Multilingual Sequence-to-Sequence Models: A Hope for
Low-Resource Language Translation?
- Authors: En-Shiun Annie Lee, Sarubi Thillainathan, Shravan Nayak, Surangika
Ranathunga, David Ifeoluwa Adelani, Ruisi Su, Arya D. McCarthy
- Abstract summary: mBART is robust to domain differences, but translations for unseen and typologically distant languages remain below 3.0 BLEU.
In answer to our title's question, mBART is not a low-resource model; we therefore encourage shifting the emphasis from new models to new data.
- Score: 5.401479499882366
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: What can pre-trained multilingual sequence-to-sequence models like mBART
contribute to translating low-resource languages? We conduct a thorough
empirical experiment in 10 languages to ascertain this, considering five
factors: (1) the amount of fine-tuning data, (2) the noise in the fine-tuning
data, (3) the amount of pre-training data in the model, (4) the impact of
domain mismatch, and (5) language typology. In addition to yielding several
heuristics, the experiments form a framework for evaluating the data
sensitivities of machine translation systems. While mBART is robust to domain
differences, its translations for unseen and typologically distant languages
remain below 3.0 BLEU. In answer to our title's question, mBART is not a
low-resource panacea; we therefore encourage shifting the emphasis from new
models to new data.
Related papers
- Machine Translation for Ge'ez Language [0.0]
Machine translation for low-resource languages such as Ge'ez faces challenges such as out-of-vocabulary words, domain mismatches, and lack of labeled training data.
We develop a multilingual neural machine translation (MNMT) model based on languages relatedness.
We also experiment with using GPT-3.5, a state-of-the-art LLM, for few-shot translation with fuzzy matches.
arXiv Detail & Related papers (2023-11-24T14:55:23Z) - Cross-lingual Transfer Learning for Check-worthy Claim Identification
over Twitter [7.601937548486356]
Misinformation spread over social media has become an undeniable infodemic.
We present a systematic study of six approaches for cross-lingual check-worthiness estimation across pairs of five diverse languages with the help of Multilingual BERT (mBERT) model.
Our results show that for some language pairs, zero-shot cross-lingual transfer is possible and can perform as good as monolingual models that are trained on the target language.
arXiv Detail & Related papers (2022-11-09T18:18:53Z) - Robustification of Multilingual Language Models to Real-world Noise with
Robust Contrastive Pretraining [14.087882550564169]
We assess the robustness of neural models on noisy data and suggest improvements are limited to the English language.
To benchmark the performance of pretrained multilingual models, we construct noisy datasets covering five languages and four NLP tasks.
We propose Robust Contrastive Pretraining (RCP) to boost the zero-shot cross-lingual robustness of multilingual pretrained models.
arXiv Detail & Related papers (2022-10-10T15:40:43Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
We analyse the effect of pre-training with monolingual data for a low-resource language.
We present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance.
We compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu)
arXiv Detail & Related papers (2022-05-21T06:44:59Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
We present a continual pre-training framework on mBART to effectively adapt it to unseen languages.
Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline.
Our approach also boosts the performance on translation pairs where both languages are seen in the original mBART's pre-training.
arXiv Detail & Related papers (2021-05-09T14:49:07Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
Previous work has demonstrated that machine translation systems can be created by finetuning on bitext.
We show that multilingual translation models can be created through multilingual finetuning.
We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance.
arXiv Detail & Related papers (2020-08-02T05:36:55Z) - Leveraging Monolingual Data with Self-Supervision for Multilingual
Neural Machine Translation [54.52971020087777]
Using monolingual data significantly boosts the translation quality of low-resource languages in multilingual models.
Self-supervision improves zero-shot translation quality in multilingual models.
We get up to 33 BLEU on ro-en translation without any parallel data or back-translation.
arXiv Detail & Related papers (2020-05-11T00:20:33Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.