Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese
- URL: http://arxiv.org/abs/2205.10517v1
- Date: Sat, 21 May 2022 06:44:59 GMT
- Title: Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese
- Authors: Kurt Micallef, Albert Gatt, Marc Tanti, Lonneke van der Plas, Claudia
Borg
- Abstract summary: We analyse the effect of pre-training with monolingual data for a low-resource language.
We present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance.
We compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu)
- Score: 4.4681678689625715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual language models such as mBERT have seen impressive cross-lingual
transfer to a variety of languages, but many languages remain excluded from
these models. In this paper, we analyse the effect of pre-training with
monolingual data for a low-resource language that is not included in mBERT --
Maltese -- with a range of pre-training set ups. We conduct evaluations with
the newly pre-trained models on three morphosyntactic tasks -- dependency
parsing, part-of-speech tagging, and named-entity recognition -- and one
semantic classification task -- sentiment analysis. We also present a newly
created corpus for Maltese, and determine the effect that the pre-training data
size and domain have on the downstream performance. Our results show that using
a mixture of pre-training domains is often superior to using Wikipedia text
only. We also find that a fraction of this corpus is enough to make significant
leaps in performance over Wikipedia-trained models. We pre-train and compare
two models on the new corpus: a monolingual BERT model trained from scratch
(BERTu), and a further pre-trained multilingual BERT (mBERTu). The models
achieve state-of-the-art performance on these tasks, despite the new corpus
being considerably smaller than typically used corpora for high-resourced
languages. On average, BERTu outperforms or performs competitively with mBERTu,
and the largest gains are observed for higher-level tasks.
Related papers
- Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Training dataset and dictionary sizes matter in BERT models: the case of
Baltic languages [0.0]
We train a trilingual LitLat BERT-like model for Lithuanian, Latvian, and English, and a monolingual Est-RoBERTa model for Estonian.
We evaluate their performance on four downstream tasks: named entity recognition, dependency parsing, part-of-speech tagging, and word analogy.
arXiv Detail & Related papers (2021-12-20T14:26:40Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual
Semantics with Monolingual Corpora [21.78571365050787]
ERNIE-M is a new training method that encourages the model to align the representation of multiple languages with monolingual corpora.
We generate pseudo-parallel sentences pairs on a monolingual corpus to enable the learning of semantic alignment between different languages.
Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results on various cross-lingual downstream tasks.
arXiv Detail & Related papers (2020-12-31T15:52:27Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z) - Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank [46.626315158735615]
Pretrained multilingual contextual representations have shown great success, but due to the limits of their pretraining data, their benefits do not apply equally to all language varieties.
This presents a challenge for language varieties unfamiliar to these models, whose labeled emphand unlabeled data is too limited to train a monolingual model effectively.
We propose the use of additional language-specific pretraining and vocabulary augmentation to adapt multilingual models to low-resource settings.
arXiv Detail & Related papers (2020-09-29T16:12:52Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
We introduce a simple, fully automated pipeline for creating languagespecific BERT models from Wikipedia data.
We assess the merits of these models using the state-of-the-art UDify on Universal Dependencies data.
arXiv Detail & Related papers (2020-06-02T11:57:53Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
This paper proposes a monolingual BERT for the Persian language (ParsBERT)
It shows its state-of-the-art performance compared to other architectures and multilingual models.
ParsBERT obtains higher scores in all datasets, including existing ones as well as composed ones.
arXiv Detail & Related papers (2020-05-26T05:05:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.