論文の概要: AI Autonomy : Self-Initiated Open-World Continual Learning and
Adaptation
- arxiv url: http://arxiv.org/abs/2203.08994v3
- Date: Wed, 19 Apr 2023 21:50:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 17:45:59.166928
- Title: AI Autonomy : Self-Initiated Open-World Continual Learning and
Adaptation
- Title(参考訳): AIオートノミー : 自己開始型オープンワールド連続学習と適応
- Authors: Bing Liu, Sahisnu Mazumder, Eric Robertson, Scott Grigsby
- Abstract要約: 本稿では,自律的かつ連続的な学習が可能なAIエージェントを構築するためのフレームワークを提案する。
重要な課題は、エージェント自身のイニシアチブで継続的に実行されるように、プロセスを自動化する方法である。
- 参考スコア(独自算出の注目度): 16.96197233523911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As more and more AI agents are used in practice, it is time to think about
how to make these agents fully autonomous so that they can (1) learn by
themselves continually in a self-motivated and self-initiated manner rather
than being retrained offline periodically on the initiation of human engineers
and (2) accommodate or adapt to unexpected or novel circumstances. As the
real-world is an open environment that is full of unknowns or novelties, the
capabilities of detecting novelties, characterizing them,
accommodating/adapting to them, gathering ground-truth training data and
incrementally learning the unknowns/novelties become critical in making the AI
agent more and more knowledgeable, powerful and self-sustainable over time. The
key challenge here is how to automate the process so that it is carried out
continually on the agent's own initiative and through its own interactions with
humans, other agents and the environment just like human on-the-job learning.
This paper proposes a framework (called SOLA) for this learning paradigm to
promote the research of building autonomous and continual learning enabled AI
agents. To show feasibility, an implemented agent is also described.
- Abstract(参考訳): ますます多くのaiエージェントが使われるようになるにつれ、これらのエージェントを完全な自律性を持たせ、(1)人間エンジニアの開始に定期的にオフラインで再訓練されるのではなく、自己モチベーションと自己開始の方法で継続的に学習し、(2)予期せぬ状況や新しい状況に適応し適応させる方法を考える時が来ている。
現実世界は未知や新規性に満ちたオープン環境であるため、ノベルティの検出、特徴付け、それらへの適応、基礎訓練データ収集、未知/ノベルティの段階的な学習といった能力は、aiエージェントを時間とともにより知識豊かで強力で自己維持可能なものにするために重要になる。
ここでの重要な課題は、エージェント自身のイニシアチブや、人間、他のエージェント、そして人間のオンザジョブ学習と同じように環境との相互作用を通じて継続的に実行されるように、プロセスを自動化する方法である。
本稿では,この学習パラダイムのためのフレームワーク(SOLA)を提案する。
実現可能性を示すために、実装エージェントについても述べる。
関連論文リスト
- Building Artificial Intelligence with Creative Agency and Self-hood [0.0]
本論文は,最終ページで紹介された論文の学術的概要について紹介する。
自己触媒ネットワークの形式的枠組みは、自己組織化された自己維持構造の起源をモデル化する手段を提供する。
論文 参考訳(メタデータ) (2024-06-09T22:28:11Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Brain-inspired and Self-based Artificial Intelligence [23.068338822392544]
機械が人間レベルの知性を達成できるかを評価するチューリングテストは、AIのルーツのひとつです。
この論文は、現在のAIが支援している「思考機械」という概念に挑戦する。
現在の人工知能は、一見知的な情報処理であり、自分自身を真に理解したり、自覚したりしない。
論文 参考訳(メタデータ) (2024-02-29T01:15:17Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - AI and the Sense of Self [0.0]
我々は、自己の認知的感覚と、責任ある行動につながる自律的な意思決定におけるその役割に焦点を当てる。
著者らは、AIエージェントのよりリッチな計算モデルを構築することに、より研究的な関心を抱くことを期待している。
論文 参考訳(メタデータ) (2022-01-07T10:54:06Z) - Self-Initiated Open World Learning for Autonomous AI Agents [16.41396764793912]
実際にAIエージェントが使われるようになるにつれて、エージェントを完全に自律的にする方法を考える時が来た。
本稿では,自己開始型オープンワールド学習エージェントの構築研究を促進するための,この学習パラダイムの理論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-10-21T18:11:02Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
エージェントのポリシーの潜在表現を学習するための強化学習に基づくフレームワークを提案する。
提案手法は代替手段よりも優れており,他のエージェントに影響を与えることを学習している。
論文 参考訳(メタデータ) (2020-11-12T19:04:26Z) - Emergent Social Learning via Multi-agent Reinforcement Learning [91.57176641192771]
社会学習は、人間と動物の知性の重要な構成要素である。
本稿では,独立系強化学習エージェントが,社会的学習を用いてパフォーマンスを向上させることを学べるかどうかを検討する。
論文 参考訳(メタデータ) (2020-10-01T17:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。