論文の概要: Incremental procedural and sensorimotor learning in cognitive humanoid
robots
- arxiv url: http://arxiv.org/abs/2305.00597v1
- Date: Sun, 30 Apr 2023 22:51:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 14:29:28.808870
- Title: Incremental procedural and sensorimotor learning in cognitive humanoid
robots
- Title(参考訳): 認知型ヒューマノイドロボットにおける増分手続きと感覚運動学習
- Authors: Leonardo de Lellis Rossi, Leticia Mara Berto, Eric Rohmer, Paula Paro
Costa, Ricardo Ribeiro Gudwin, Esther Luna Colombini and Alexandre da Silva
Simoes
- Abstract要約: 本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
- 参考スコア(独自算出の注目度): 52.77024349608834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to automatically learn movements and behaviors of increasing
complexity is a long-term goal in autonomous systems. Indeed, this is a very
complex problem that involves understanding how knowledge is acquired and
reused by humans as well as proposing mechanisms that allow artificial agents
to reuse previous knowledge. Inspired by Jean Piaget's theory's first three
sensorimotor substages, this work presents a cognitive agent based on CONAIM
(Conscious Attention-Based Integrated Model) that can learn procedures
incrementally. Throughout the paper, we show the cognitive functions required
in each substage and how adding new functions helps address tasks previously
unsolved by the agent. Experiments were conducted with a humanoid robot in a
simulated environment modeled with the Cognitive Systems Toolkit (CST)
performing an object tracking task. The system is modeled using a single
procedural learning mechanism based on Reinforcement Learning. The increasing
agent's cognitive complexity is managed by adding new terms to the reward
function for each learning phase. Results show that this approach is capable of
solving complex tasks incrementally.
- Abstract(参考訳): 複雑化する動きや行動を自動的に学習する能力は、自律システムにおける長期的な目標である。
実際、これは人間の知識の獲得と再利用方法の理解と、人工エージェントが以前の知識を再利用できるようにするメカニズムの提案を含む非常に複雑な問題である。
ジャン・ピアジェ理論の最初の3つの感覚運動サブステージに触発されたこの研究は、段階的に手順を学習できるconAIM(Conscious Attention-Based Integrated Model)に基づく認知エージェントを提示する。
本稿では,各サブステージに必要な認知機能と,エージェントの未解決課題に対する新たな機能の追加について述べる。
物体追跡タスクを実行するCognitive Systems Toolkit(CST)をモデルとしたシミュレーション環境でヒューマノイドロボットを用いて実験を行った。
このシステムは強化学習に基づく単一の手続き学習機構を用いてモデル化される。
学習段階ごとに報酬関数に新たな用語を追加することにより、エージェントの認知的複雑性を増大させる。
結果は、このアプローチが複雑なタスクを段階的に解決できることを示している。
関連論文リスト
- Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect
Reasoning in Programmable Attractor Neural Networks [2.0646127669654826]
本稿では,脳にインスパイアされた神経認知アーキテクチャであるNeuroCERILについて紹介する。
シミュレーションされたロボット模倣学習領域において,NeuroCERILは様々な手続き的スキルを習得できることを示す。
我々は、NeuroCERILは人間のような模倣学習の実行可能な神経モデルであると結論付けた。
論文 参考訳(メタデータ) (2022-11-11T19:56:11Z) - Intelligent problem-solving as integrated hierarchical reinforcement
learning [11.284287026711125]
生物学的エージェントにおける複雑な問題解決行動の開発は階層的認知機構に依存している。
本稿では,生物にインスパイアされた階層的なメカニズムを組み込むことにより,人工エージェントの高度な問題解決能力を実現する方法を提案する。
われわれの結果は、より洗練された認知にインスパイアされた階層型機械学習アーキテクチャの開発を導くことを期待している。
論文 参考訳(メタデータ) (2022-08-18T09:28:03Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
我々は,学習効率と学習に基づく自律的把握の一般化性を向上させるために,階層的リワード機構を備えた物理誘導型深層強化学習を開発した。
本手法は3本指MICOロボットアームを用いたロボット把握作業において有効である。
論文 参考訳(メタデータ) (2022-05-26T18:01:56Z) - From Biological Synapses to Intelligent Robots [0.0]
ヘビアンシナプス学習は、機械学習とインテリジェンスのための機能的関連モデルとして議論されている。
適応的な学習と制御の可能性を、監督なしで先導する。
ここで収集された洞察は、インテリジェントなロボティクスとセンサーシステムの選択ソリューションとして、Hebbianモデルに向けられている。
論文 参考訳(メタデータ) (2022-02-25T12:39:22Z) - BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning [108.41464483878683]
本稿では,視覚に基づくロボット操作システムにおいて,新しいタスクを一般化することの課題について検討する。
実演と介入の両方から学ぶことができるインタラクティブで柔軟な模倣学習システムを開発した。
実際のロボットにおけるデータ収集を100以上のタスクにスケールすると、このシステムは平均的な成功率44%で24の目に見えない操作タスクを実行できる。
論文 参考訳(メタデータ) (2022-02-04T07:30:48Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Hierarchical principles of embodied reinforcement learning: A review [11.613306236691427]
すべての重要な認知メカニズムが独立した計算アーキテクチャで独立に実装されていることを示す。
我々は,より洗練された認知的インスパイアされた階層的手法の開発を導くことを期待する。
論文 参考訳(メタデータ) (2020-12-18T10:19:38Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
本研究では,移動ロボットの価格学習を支援するために,本質的なモチベーションを用いたアルゴリズムを提案する。
このアルゴリズムは、事前にプログラムされたアクションなしで、相互に関連のある価格を自律的に発見し、学習し、適応することができる。
一度学習すると、これらの余裕はアルゴリズムによって様々な困難を伴うタスクを実行するために一連のアクションを計画するために使われる。
論文 参考訳(メタデータ) (2020-09-23T07:18:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。