論文の概要: Machine Learning for Encrypted Malicious Traffic Detection: Approaches,
Datasets and Comparative Study
- arxiv url: http://arxiv.org/abs/2203.09332v1
- Date: Thu, 17 Mar 2022 14:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 20:52:18.800379
- Title: Machine Learning for Encrypted Malicious Traffic Detection: Approaches,
Datasets and Comparative Study
- Title(参考訳): 不正交通検知のための機械学習:アプローチ,データセットおよび比較研究
- Authors: Zihao Wang, Kar-Wai Fok, Vrizlynn L. L. Thing
- Abstract要約: 新型コロナウイルス(COVID-19)後の環境では、悪意のあるトラフィック暗号化が急速に増加している。
我々は、機械学習に基づく暗号化された悪意のあるトラフィック検出手法の普遍的な枠組みを定式化する。
暗号化された悪意のあるトラフィック検出アルゴリズムを10個実装し比較する。
- 参考スコア(独自算出の注目度): 6.267890584151111
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As people's demand for personal privacy and data security becomes a priority,
encrypted traffic has become mainstream in the cyber world. However, traffic
encryption is also shielding malicious and illegal traffic introduced by
adversaries, from being detected. This is especially so in the post-COVID-19
environment where malicious traffic encryption is growing rapidly. Common
security solutions that rely on plain payload content analysis such as deep
packet inspection are rendered useless. Thus, machine learning based approaches
have become an important direction for encrypted malicious traffic detection.
In this paper, we formulate a universal framework of machine learning based
encrypted malicious traffic detection techniques and provided a systematic
review. Furthermore, current research adopts different datasets to train their
models due to the lack of well-recognized datasets and feature sets. As a
result, their model performance cannot be compared and analyzed reliably.
Therefore, in this paper, we analyse, process and combine datasets from 5
different sources to generate a comprehensive and fair dataset to aid future
research in this field. On this basis, we also implement and compare 10
encrypted malicious traffic detection algorithms. We then discuss challenges
and propose future directions of research.
- Abstract(参考訳): 個人のプライバシーとデータセキュリティに対する人々の要求が優先され、暗号化されたトラフィックがサイバー世界で主流になっている。
しかし、トラフィック暗号化はまた、敵が導入した悪意のある、違法なトラフィックを検知することを防ぐ。
これは特に、悪質なトラフィック暗号化が急速に増加しているcovid-19後の環境において顕著である。
ディープパケット検査のような平易なペイロードコンテンツ分析に依存する一般的なセキュリティソリューションは役に立たない。
このように、機械学習に基づくアプローチは、悪意のあるトラフィック検出を暗号化するための重要な方向となっている。
本稿では,機械学習に基づく暗号化された不正なトラフィック検出手法の普遍的な枠組みを定式化し,体系的なレビューを行った。
さらに、現在の研究では、よく認識されたデータセットと機能セットが欠如しているため、モデルのトレーニングに異なるデータセットを採用している。
その結果、モデルの性能を比較・分析することは不可能である。
そこで本研究では,5つの異なるソースからのデータセットを分析し,処理し,組み合わせることで,将来的な研究を支援する包括的で公正なデータセットを生成する。
また,暗号化された不正なトラフィック検出アルゴリズムを10個実装し,比較する。
次に課題を議論し,今後の研究の方向性を提案する。
関連論文リスト
- Preliminary study on artificial intelligence methods for cybersecurity threat detection in computer networks based on raw data packets [34.82692226532414]
本稿では,ネットワークトラフィック内の生パケットデータから直接リアルタイムに攻撃を検知できるディープラーニング手法について検討する。
コンピュータビジョンモデルを用いた処理に適した2次元画像表現を用いて,パケットをウィンドウに積み重ねて別々に認識する手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T15:04:00Z) - Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lensは、T5アーキテクチャを活用して、大規模な未ラベルデータから事前訓練された表現を学習するネットワークトラフィックの基礎モデルである。
Masked Span Prediction(MSP)、Packet Order Prediction(POP)、Homologous Traffic Prediction(HTP)の3つの異なるタスクを組み合わせた新しい損失を設計する。
論文 参考訳(メタデータ) (2024-02-06T02:45:13Z) - Feature Analysis of Encrypted Malicious Traffic [3.3148826359547514]
近年,自己プロパゲーションや通信に暗号化HTTPトラフィックを使用するマルウェア攻撃の増加が著しく進んでいる。
アンチウイルスソフトウェアやファイアウォールは一般的に暗号化キーにアクセスできないため、暗号化されたデータの直接検出が成功する可能性は低い。
これまでの研究によると、基盤となるデータが暗号化されている場合でも、トラフィック分析は悪意のある意図を示すことができる。
論文 参考訳(メタデータ) (2023-12-06T12:04:28Z) - CRYPTO-MINE: Cryptanalysis via Mutual Information Neural Estimation [42.481750913003204]
相互情報(英: Mutual Information、MI)は、暗号システムの効率を評価する尺度である。
機械学習の最近の進歩は、ニューラルネットワークを用いたMIの推定の進歩を可能にしている。
本研究は,暗号分野におけるMI推定の新たな応用について述べる。
論文 参考訳(メタデータ) (2023-09-14T20:30:04Z) - Feature Mining for Encrypted Malicious Traffic Detection with Deep
Learning and Other Machine Learning Algorithms [7.404682407709988]
暗号化メカニズムの人気は、悪意のあるトラフィック検出に大きな課題をもたらします。
従来の検出技術は、暗号化されたトラフィックの復号化なしには機能しない。
本稿では,交通特徴の詳細な分析を行い,現状の交通特徴生成手法の比較を行う。
本稿では,暗号化された不正なトラフィック分析に特化して設計された,暗号化されたトラフィック機能に関する新しい概念を提案する。
論文 参考訳(メタデータ) (2023-04-07T15:25:36Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Decoder Fusion RNN: Context and Interaction Aware Decoders for
Trajectory Prediction [53.473846742702854]
本稿では,動き予測のための反復的,注意に基づくアプローチを提案する。
Decoder Fusion RNN (DF-RNN) は、リカレント動作エンコーダ、エージェント間マルチヘッドアテンションモジュール、コンテキスト認識デコーダで構成される。
提案手法の有効性をArgoverseモーション予測データセットで検証し,その性能を公開ベンチマークで示す。
論文 参考訳(メタデータ) (2021-08-12T15:53:37Z) - Malware Traffic Classification: Evaluation of Algorithms and an
Automated Ground-truth Generation Pipeline [8.779666771357029]
地中構造データを生成するための自動パケットデータラベリングパイプラインを提案する。
この観測可能なメタデータから抽出された、ユニークで多様な機能のセットを利用する、さまざまな種類のクラスタリングアプローチを探索し、テストする。
論文 参考訳(メタデータ) (2020-10-22T11:48:51Z) - Federated Learning in Vehicular Networks [41.89469856322786]
フェデレートラーニング(FL)フレームワークは、トランスミッションオーバーヘッドを減らすことを目的として、効率的なツールとして導入された。
本稿では,車載ネットワークアプリケーションにおける一元学習(CL)によるFLを用いたインテリジェント交通システムの構築について検討する。
データラベリングやモデルトレーニングといった学習の観点からも,コミュニケーションの観点からも,データレート,信頼性,送信オーバーヘッド,プライバシ,リソース管理といった面から,大きな課題を識別する。
論文 参考訳(メタデータ) (2020-06-02T06:32:59Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。