論文の概要: Feature Analysis of Encrypted Malicious Traffic
- arxiv url: http://arxiv.org/abs/2312.04596v1
- Date: Wed, 6 Dec 2023 12:04:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 17:41:54.614028
- Title: Feature Analysis of Encrypted Malicious Traffic
- Title(参考訳): 暗号化された悪意交通の特徴解析
- Authors: Anish Singh Shekhawat and Fabio Di Troia and Mark Stamp
- Abstract要約: 近年,自己プロパゲーションや通信に暗号化HTTPトラフィックを使用するマルウェア攻撃の増加が著しく進んでいる。
アンチウイルスソフトウェアやファイアウォールは一般的に暗号化キーにアクセスできないため、暗号化されたデータの直接検出が成功する可能性は低い。
これまでの研究によると、基盤となるデータが暗号化されている場合でも、トラフィック分析は悪意のある意図を示すことができる。
- 参考スコア(独自算出の注目度): 3.3148826359547514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years there has been a dramatic increase in the number of malware
attacks that use encrypted HTTP traffic for self-propagation or communication.
Antivirus software and firewalls typically will not have access to encryption
keys, and therefore direct detection of malicious encrypted data is unlikely to
succeed. However, previous work has shown that traffic analysis can provide
indications of malicious intent, even in cases where the underlying data
remains encrypted. In this paper, we apply three machine learning techniques to
the problem of distinguishing malicious encrypted HTTP traffic from benign
encrypted traffic and obtain results comparable to previous work. We then
consider the problem of feature analysis in some detail. Previous work has
often relied on human expertise to determine the most useful and informative
features in this problem domain. We demonstrate that such feature-related
information can be obtained directly from machine learning models themselves.
We argue that such a machine learning based approach to feature analysis is
preferable, as it is more reliable, and we can, for example, uncover relatively
unintuitive interactions between features.
- Abstract(参考訳): 近年,自己プロパゲーションや通信に暗号化HTTPトラフィックを使用するマルウェア攻撃の増加が著しく進んでいる。
アンチウイルスソフトウェアやファイアウォールは一般的に暗号化キーにアクセスできないため、悪意のある暗号化データの直接検出は成功しない。
しかし、以前の研究は、基盤となるデータが暗号化されている場合でも、トラフィック分析が悪意のある意図を示すことができることを示した。
本稿では,悪質な暗号化されたHTTPトラフィックと良質な暗号化されたトラフィックを区別する問題に対して,3つの機械学習手法を適用する。
そして、特徴分析の問題をある程度詳細に検討する。
それまでの作業はしばしば、この問題領域で最も有用で有益な機能を決定するために、人間の専門知識に依存してきた。
このような特徴関連情報を機械学習モデルから直接取得できることを実証する。
このような機械学習に基づく特徴分析のアプローチは、より信頼性が高く、例えば、機能間の比較的直観的な相互作用を明らかにすることができるため、望ましいと主張する。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Maybenot: A Framework for Traffic Analysis Defenses [1.6114012813668932]
我々は、交通分析防衛のためのフレームワークであるM maynotを提示する。
おそらくnotは使いやすく、既存のエンドツーエンドの暗号化プロトコルに統合できるように設計されている。
論文 参考訳(メタデータ) (2023-04-19T08:59:34Z) - Feature Mining for Encrypted Malicious Traffic Detection with Deep
Learning and Other Machine Learning Algorithms [7.404682407709988]
暗号化メカニズムの人気は、悪意のあるトラフィック検出に大きな課題をもたらします。
従来の検出技術は、暗号化されたトラフィックの復号化なしには機能しない。
本稿では,交通特徴の詳細な分析を行い,現状の交通特徴生成手法の比較を行う。
本稿では,暗号化された不正なトラフィック分析に特化して設計された,暗号化されたトラフィック機能に関する新しい概念を提案する。
論文 参考訳(メタデータ) (2023-04-07T15:25:36Z) - An Embarrassingly Simple Backdoor Attack on Self-supervised Learning [52.28670953101126]
自己教師付き学習(SSL)は、ラベルに頼ることなく、複雑なデータの高品質な表現を学習することができる。
SSLのバックドア攻撃に対する脆弱性について検討する。
論文 参考訳(メタデータ) (2022-10-13T20:39:21Z) - Instance Attack:An Explanation-based Vulnerability Analysis Framework
Against DNNs for Malware Detection [0.0]
本稿では,インスタンスベースの攻撃の概念を提案する。
我々の方式は解釈可能であり、ブラックボックス環境でも機能する。
提案手法はブラックボックス設定で動作し,その結果をドメイン知識で検証することができる。
論文 参考訳(メタデータ) (2022-09-06T12:41:20Z) - An anomaly detection approach for backdoored neural networks: face
recognition as a case study [77.92020418343022]
本稿では,異常検出の原理に基づく新しいバックドアネットワーク検出手法を提案する。
バックドアネットワークの新たなデータセット上で本手法を検証し,完全スコアで検出可能性について報告する。
論文 参考訳(メタデータ) (2022-08-22T12:14:13Z) - Machine Learning for Encrypted Malicious Traffic Detection: Approaches,
Datasets and Comparative Study [6.267890584151111]
新型コロナウイルス(COVID-19)後の環境では、悪意のあるトラフィック暗号化が急速に増加している。
我々は、機械学習に基づく暗号化された悪意のあるトラフィック検出手法の普遍的な枠組みを定式化する。
暗号化された悪意のあるトラフィック検出アルゴリズムを10個実装し比較する。
論文 参考訳(メタデータ) (2022-03-17T14:00:55Z) - Malware Traffic Classification: Evaluation of Algorithms and an
Automated Ground-truth Generation Pipeline [8.779666771357029]
地中構造データを生成するための自動パケットデータラベリングパイプラインを提案する。
この観測可能なメタデータから抽出された、ユニークで多様な機能のセットを利用する、さまざまな種類のクラスタリングアプローチを探索し、テストする。
論文 参考訳(メタデータ) (2020-10-22T11:48:51Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。