Geometry aware 3D generation from in-the-wild images in ImageNet
- URL: http://arxiv.org/abs/2402.00225v2
- Date: Fri, 2 Feb 2024 01:55:32 GMT
- Title: Geometry aware 3D generation from in-the-wild images in ImageNet
- Authors: Qijia Shen, Guangrun Wang
- Abstract summary: We propose a method for reconstructing 3D geometry from diverse and unstructured Imagenet dataset without camera pose information.
We use an efficient triplane representation to learn 3D models from 2D images and modify the architecture of the generator backbone based on StyleGAN2.
The trained generator can produce class-conditional 3D models as well as renderings from arbitrary viewpoints.
- Score: 18.157263188192434
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generating accurate 3D models is a challenging problem that traditionally
requires explicit learning from 3D datasets using supervised learning. Although
recent advances have shown promise in learning 3D models from 2D images, these
methods often rely on well-structured datasets with multi-view images of each
instance or camera pose information. Furthermore, these datasets usually
contain clean backgrounds with simple shapes, making them expensive to acquire
and hard to generalize, which limits the applicability of these methods. To
overcome these limitations, we propose a method for reconstructing 3D geometry
from the diverse and unstructured Imagenet dataset without camera pose
information. We use an efficient triplane representation to learn 3D models
from 2D images and modify the architecture of the generator backbone based on
StyleGAN2 to adapt to the highly diverse dataset. To prevent mode collapse and
improve the training stability on diverse data, we propose to use multi-view
discrimination. The trained generator can produce class-conditional 3D models
as well as renderings from arbitrary viewpoints. The class-conditional
generation results demonstrate significant improvement over the current
state-of-the-art method. Additionally, using PTI, we can efficiently
reconstruct the whole 3D geometry from single-view images.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation [2.3213238782019316]
GIMDiffusion is a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images.
We exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion.
In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models.
arXiv Detail & Related papers (2024-09-05T17:21:54Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models [65.22994156658918]
We present a method that learns to generate multi-view images in a single denoising process from real-world data.
We design an autoregressive generation that renders more 3D-consistent images at any viewpoint.
arXiv Detail & Related papers (2024-03-04T07:57:05Z) - AG3D: Learning to Generate 3D Avatars from 2D Image Collections [96.28021214088746]
We propose a new adversarial generative model of realistic 3D people from 2D images.
Our method captures shape and deformation of the body and loose clothing by adopting a holistic 3D generator.
We experimentally find that our method outperforms previous 3D- and articulation-aware methods in terms of geometry and appearance.
arXiv Detail & Related papers (2023-05-03T17:56:24Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
We present a general-purpose framework for modeling 3D shapes using CNNs.
Using just a single depth image of the object, we can output a dense multi-view depth map representation of 3D objects.
arXiv Detail & Related papers (2020-09-07T17:58:27Z) - Leveraging 2D Data to Learn Textured 3D Mesh Generation [33.32377849866736]
We present the first generative model of textured 3D meshes.
We train our model to explain a distribution of images by modelling each image as a 3D foreground object.
It learns to generate meshes that when rendered, produce images similar to those in its training set.
arXiv Detail & Related papers (2020-04-08T18:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.