Identifiability of Sparse Causal Effects using Instrumental Variables
- URL: http://arxiv.org/abs/2203.09380v4
- Date: Fri, 18 Oct 2024 09:15:56 GMT
- Title: Identifiability of Sparse Causal Effects using Instrumental Variables
- Authors: Niklas Pfister, Jonas Peters,
- Abstract summary: In this paper, we consider linear models in which the causal effect from covariables $X$ on a response $Y$ is sparse.
We provide conditions under which the causal coefficient becomes identifiable from the observed distribution.
As an estimator, we propose spaceIV and prove that it consistently estimates the causal effect if the model is identifiable.
- Score: 11.97552507834888
- License:
- Abstract: Exogenous heterogeneity, for example, in the form of instrumental variables can help us learn a system's underlying causal structure and predict the outcome of unseen intervention experiments. In this paper, we consider linear models in which the causal effect from covariates $X$ on a response $Y$ is sparse. We provide conditions under which the causal coefficient becomes identifiable from the observed distribution. These conditions can be satisfied even if the number of instruments is as small as the number of causal parents. We also develop graphical criteria under which identifiability holds with probability one if the edge coefficients are sampled randomly from a distribution that is absolutely continuous with respect to Lebesgue measure and $Y$ is childless. As an estimator, we propose spaceIV and prove that it consistently estimates the causal effect if the model is identifiable and evaluate its performance on simulated data. If identifiability does not hold, we show that it may still be possible to recover a subset of the causal parents.
Related papers
- Identifying General Mechanism Shifts in Linear Causal Representations [58.6238439611389]
We consider the linear causal representation learning setting where we observe a linear mixing of $d$ unknown latent factors.
Recent work has shown that it is possible to recover the latent factors as well as the underlying structural causal model over them.
We provide a surprising identifiability result that it is indeed possible, under some very mild standard assumptions, to identify the set of shifted nodes.
arXiv Detail & Related papers (2024-10-31T15:56:50Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Reinterpreting causal discovery as the task of predicting unobserved
joint statistics [15.088547731564782]
We argue that causal discovery can help inferring properties of the unobserved joint distributions'
We define a learning scenario where the input is a subset of variables and the label is some statistical property of that subset.
arXiv Detail & Related papers (2023-05-11T15:30:54Z) - Causal Discovery via Conditional Independence Testing with Proxy Variables [35.3493980628004]
The presence of unobserved variables, such as the latent confounder, can introduce bias in conditional independence testing.
We propose a novel hypothesis-testing procedure that can effectively examine the existence of the causal relationship over continuous variables.
arXiv Detail & Related papers (2023-05-09T09:08:39Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
We study the class of location-scale or heteroscedastic noise models (LSNMs)
We show the causal direction is identifiable up to some pathological cases.
We propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks.
arXiv Detail & Related papers (2022-10-13T17:18:59Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Exploiting Independent Instruments: Identification and Distribution
Generalization [3.701112941066256]
We exploit the independence for distribution generalization by taking into account higher moments.
We prove that the proposed estimator is invariant to distributional shifts on the instruments.
These results hold even in the under-identified case where the instruments are not sufficiently rich to identify the causal function.
arXiv Detail & Related papers (2022-02-03T21:49:04Z) - Inferring Causal Direction from Observational Data: A Complexity
Approach [0.3553493344868413]
We propose several criteria for distinguishing cause and effect in pairs of discrete or continuous random variables.
We demonstrate the accuracy of the criteria on synthetic data generated under a broad family of causal mechanisms and types of noise.
arXiv Detail & Related papers (2020-10-12T12:10:37Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.