論文の概要: Euler State Networks
- arxiv url: http://arxiv.org/abs/2203.09382v1
- Date: Thu, 17 Mar 2022 15:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-18 13:07:39.228743
- Title: Euler State Networks
- Title(参考訳): euler状態ネットワーク
- Authors: Claudio Gallicchio
- Abstract要約: 我々はEuSN(Euler State Network)と呼ばれる新しいReservoir Computing(RC)モデルを提案する。
我々の数学的解析は、結果のモデルがユニタリ有効スペクトル半径とゼロ局所リアプノフ指数に偏っていることを示している。
実世界の時系列分類ベンチマークの結果は、EuSNがトレーニング可能なリカレントニューラルネットワークの精度のレベルを一致(あるいは超える)ことができることを指摘している。
- 参考スコア(独自算出の注目度): 3.55810827129032
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inspired by the numerical solution of ordinary differential equations, in
this paper we propose a novel Reservoir Computing (RC) model, called the Euler
State Network (EuSN). The introduced approach makes use of forward Euler
discretization and antisymmetric recurrent matrices to design reservoir
dynamics that are both stable and non-dissipative by construction.
Our mathematical analysis shows that the resulting model is biased towards
unitary effective spectral radius and zero local Lyapunov exponents,
intrinsically operating at the edge of stability. Experiments on synthetic
tasks indicate the marked superiority of the proposed approach, compared to
standard RC models, in tasks requiring long-term memorization skills.
Furthermore, results on real-world time series classification benchmarks point
out that EuSN is capable of matching (or even surpassing) the level of accuracy
of trainable Recurrent Neural Networks, while allowing up to 100-fold savings
in computation time and energy consumption.
- Abstract(参考訳): 本稿では, 常微分方程式の数値解に着想を得て, オイラー状態ネットワーク(EuSN)と呼ばれる新しい貯留層計算(RC)モデルを提案する。
導入されたアプローチでは、前方オイラー離散化と反対称再帰行列を用いて、構造によって安定かつ非散逸な貯水池ダイナミクスを設計する。
我々の数学的解析は、結果のモデルが一元的有効スペクトル半径とゼロ局所リアプノフ指数に偏り、本質的に安定性の端で動作していることを示している。
合成課題実験は, 長期記憶能力を必要とするタスクにおいて, 標準rcモデルと比較して, 提案手法の顕著な優位性を示している。
さらに、実世界の時系列分類ベンチマークの結果、EuSNはトレーニング可能なリカレントニューラルネットワークの精度のレベルをマッチング(あるいは超える)し、計算時間とエネルギー消費の最大100倍の節約を可能にすると指摘している。
関連論文リスト
- Recurrent Stochastic Configuration Networks for Temporal Data Analytics [3.8719670789415925]
本稿では,問題解決のためのコンフィグレーションネットワーク(RSCN)のリカレントバージョンを開発する。
我々は、初期RCCNモデルを構築し、その後、オンラインで出力重みを更新する。
数値的な結果は,提案したRCCNが全データセットに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2024-06-21T03:21:22Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Gated Recurrent Neural Networks with Weighted Time-Delay Feedback [59.125047512495456]
重み付き時間遅延フィードバック機構を備えた新しいゲートリカレントユニット(GRU)を導入する。
我々は、$tau$-GRUが、最先端のリカレントユニットやゲート型リカレントアーキテクチャよりも早く収束し、より一般化できることを示します。
論文 参考訳(メタデータ) (2022-12-01T02:26:34Z) - Composite FORCE learning of chaotic echo state networks for time-series
prediction [7.650966670809372]
本稿では,初期活動が自然にカオスなESNを学習するための複合Force学習法を提案する。
その結果,従来の手法に比べて学習性能と予測性能が著しく向上することが判明した。
論文 参考訳(メタデータ) (2022-07-06T03:44:09Z) - Unsupervised Reservoir Computing for Solving Ordinary Differential
Equations [1.6371837018687636]
通常の微分方程式(ODE)を満たす近似解を発見することができるエコー状態のリカレントニューラルネットワーク
ベイジアン最適化を用いて高次元ハイパーパラメータ空間における最適集合を効率よく発見し、1つの集合がロバストであり、異なる初期条件と時間範囲のODEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-08-25T18:16:42Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
本研究では,時間スケールの異なる範囲にわたる動的システムのフローマップを近似するために,ディープニューラルネットワークの時間ステップ階層を構築した。
結果のモデルは純粋にデータ駆動であり、マルチスケールのダイナミックスの特徴を活用する。
我々は,LSTM,貯水池計算,クロックワークRNNなどの最先端手法に対して,我々のアルゴリズムをベンチマークする。
論文 参考訳(メタデータ) (2020-08-22T07:16:53Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
我々のリプシッツ再帰ユニットは、他の連続時間RNNと比較して、入力やパラメータの摂動に対してより堅牢であることを示す。
実験により,Lipschitz RNNは,ベンチマークタスクにおいて,既存のリカレントユニットよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-22T08:44:52Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。