Improving Quantum Simulation Efficiency of Final State Radiation with
Dynamic Quantum Circuits
- URL: http://arxiv.org/abs/2203.10018v2
- Date: Sat, 24 Jun 2023 01:44:29 GMT
- Title: Improving Quantum Simulation Efficiency of Final State Radiation with
Dynamic Quantum Circuits
- Authors: Plato Deliyannis, James Sud, Diana Chamaki, Zo\"e Webb-Mack, Christian
W. Bauer, Benjamin Nachman
- Abstract summary: We make use of a new quantum hardware capability called dynamical quantum computing to improve the scaling of the QPS algorithm.
We modify the quantum parton shower circuit to incorporate mid-circuit qubit measurements, resets, and quantum operations conditioned on classical information.
- Score: 1.3375143521862154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reference arXiv:1904.03196 recently introduced an algorithm (QPS) for
simulating parton showers with intermediate flavor states using polynomial
resources on a digital quantum computer. We make use of a new quantum hardware
capability called dynamical quantum computing to improve the scaling of this
algorithm to significantly improve the method precision. In particular, we
modify the quantum parton shower circuit to incorporate mid-circuit qubit
measurements, resets, and quantum operations conditioned on classical
information. This reduces the computational depth from
$\mathcal{O}(N^5\log_2(N)^2)$ to $\mathcal{O}(N^3\log_2(N)^2)$ and the qubit
requirements are reduced from $\mathcal{O}(N\log_2(N))$ to $\mathcal{O}(N)$.
Using "matrix product state" statevector simulators, we demonstrate that the
improved algorithm yields expected results for 2, 3, 4, and 5-steps of the
algorithm. We compare absolute costs with the original QPS algorithm, and show
that dynamical quantum computing can significantly reduce costs in the class of
digital quantum algorithms representing quantum walks (which includes the QPS).
Related papers
- Quantum multi-row iteration algorithm for linear systems with non-square coefficient matrices [7.174256268278207]
We propose a quantum algorithm inspired by the classical multi-row iteration method.
Our algorithm places less demand on the coefficient matrix, making it suitable for solving inconsistent systems.
arXiv Detail & Related papers (2024-09-06T03:32:02Z) - Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning [2.7119354495508787]
We propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data.
After QRDR, the dimension of input data $N$ can be reduced into desired scale $R$, and the effective information of the original data will be preserved.
Our algorithm has the potential to be utilized in a variety of computing fields.
arXiv Detail & Related papers (2024-05-21T09:26:18Z) - Towards multiqudit quantum processor based on a $^{171}$Yb$^{+}$ ion string: Realizing basic quantum algorithms [29.67699443799741]
We demonstrate a quantum processor based on a 3D linear Paul trap that uses $171$Yb$+$ ions with 8 individually controllable four-level qudits (ququarts)
The design of the developed ion trap provides high secular, low heating rate, which, together with individual addressing and readout optical systems, allows executing quantum algorithms.
arXiv Detail & Related papers (2024-02-05T15:48:43Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
We introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $mathcalO(d/epsilon)$ to $epsilon$-Nash equilibria.
This quadratic speed-up sets a new benchmark for computing $epsilon$-Nash equilibria in quantum zero-sum games.
arXiv Detail & Related papers (2023-11-17T20:38:38Z) - Non-Linear Transformations of Quantum Amplitudes: Exponential
Improvement, Generalization, and Applications [0.0]
Quantum algorithms manipulate the amplitudes of quantum states to find solutions to computational problems.
We present a framework for applying a general class of non-linear functions to the amplitudes of quantum states.
Our work provides an important and efficient building block with potentially numerous applications in areas such as optimization, state preparation, quantum chemistry, and machine learning.
arXiv Detail & Related papers (2023-09-18T14:57:21Z) - Efficient Quantum Simulation of Electron-Phonon Systems by Variational
Basis State Encoder [12.497706003633391]
Digital quantum simulation of electron-phonon systems requires truncating infinite phonon levels into $N$ basis states.
We propose a variational basis state encoding algorithm that reduces the scaling of the number of qubits and quantum gates.
arXiv Detail & Related papers (2023-01-04T04:23:53Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.