Logical Abstractions for Noisy Variational Quantum Algorithm Simulation
- URL: http://arxiv.org/abs/2103.17226v1
- Date: Wed, 31 Mar 2021 17:20:13 GMT
- Title: Logical Abstractions for Noisy Variational Quantum Algorithm Simulation
- Authors: Yipeng Huang, Steven Holtzen, Todd Millstein, Guy Van den Broeck, and
Margaret Martonosi
- Abstract summary: Existing quantum circuit simulators do not address the common traits of variational algorithms.
We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms.
- Score: 25.515765956985188
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the unreliability and limited capacity of existing quantum computer
prototypes, quantum circuit simulation continues to be a vital tool for
validating next generation quantum computers and for studying variational
quantum algorithms, which are among the leading candidates for useful quantum
computation. Existing quantum circuit simulators do not address the common
traits of variational algorithms, namely: 1) their ability to work with noisy
qubits and operations, 2) their repeated execution of the same circuits but
with different parameters, and 3) the fact that they sample from circuit final
wavefunctions to drive a classical optimization routine. We present a quantum
circuit simulation toolchain based on logical abstractions targeted for
simulating variational algorithms. Our proposed toolchain encodes quantum
amplitudes and noise probabilities in a probabilistic graphical model, and it
compiles the circuits to logical formulas that support efficient repeated
simulation of and sampling from quantum circuits for different parameters.
Compared to state-of-the-art state vector and density matrix quantum circuit
simulators, our simulation approach offers greater performance when sampling
from noisy circuits with at least eight to 20 qubits and with around 12
operations on each qubit, making the approach ideal for simulating near-term
variational quantum algorithms. And for simulating noise-free shallow quantum
circuits with 32 qubits, our simulation approach offers a $66\times$ reduction
in sampling cost versus quantum circuit simulation techniques based on tensor
network contraction.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Compact quantum algorithms for time-dependent differential equations [0.0]
We build on an idea based on linear combination of unitaries to simulate non-unitary, non-Hermitian quantum systems.
We generate hybrid quantum-classical algorithms that efficiently perform iterative matrix-vector multiplication and matrix inversion operations.
arXiv Detail & Related papers (2024-05-16T02:14:58Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Deep Quantum Circuit Simulations of Low-Energy Nuclear States [51.823503818486394]
We present advances in high-performance numerical simulations of deep quantum circuits.
circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated.
arXiv Detail & Related papers (2023-10-26T19:10:58Z) - Approximation Algorithm for Noisy Quantum Circuit Simulation [3.55689240295244]
This paper introduces a novel approximation algorithm for simulating noisy quantum circuits.
Our method offers a speedup over the commonly-used approximation (sampling) algorithm -- quantum trajectories method.
arXiv Detail & Related papers (2022-11-30T14:20:22Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.