Non-local computation of quantum circuits with small light cones
- URL: http://arxiv.org/abs/2203.10106v2
- Date: Tue, 31 May 2022 22:30:48 GMT
- Title: Non-local computation of quantum circuits with small light cones
- Authors: Kfir Dolev and Sam Cree
- Abstract summary: Port-based teleportation costs much less entanglement when done only on a small number of qubits at a time.
We give an explicit class of unitaries for which our protocol's entanglement cost scales better than any known protocol.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of non-local quantum computation requires implementation of a
unitary on $n$ qubits between two parties with only one round of communication,
ideally with minimal pre-shared entanglement. We introduce a new protocol that
makes use of the fact that port-based teleportation costs much less
entanglement when done only on a small number of qubits at a time. Whereas
previous protocols have entanglement cost independent of the unitary or scaling
with its complexity, the cost of the new protocol scales with the non-locality
of the unitary. Specifically, it takes the form $\sim n^{4V}$ with $V$ the
maximum volume of a past light cone in a circuit implementing the unitary. Thus
we can implement unitary circuits with $V\sim O(1)$ using polynomial
entanglement, and those with $V\sim \mathrm{polylog}(n)$ using quasi-polynomial
entanglement. For a general unitary circuit with $d$ layers of $k$-qubit gates
$V$ is at most $k^d$, but if geometric locality is imposed it is at most
polynomial in $d$. We give an explicit class of unitaries for which our
protocol's entanglement cost scales better than any known protocol. We also
show that several extensions can be made without significantly affecting the
entanglement cost - arbitrary local pre- and post-processing; global Clifford
pre- and post-processing; and the addition of a polynomial number of auxiliary
systems.
Related papers
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Trade-offs between Entanglement and Communication [5.88864611435337]
We show that quantum simultaneous protocols with $tildeTheta(k5 log3 n)$ qubits of entanglement can exponentially outperform two-way randomized protocols with $O(k)$ qubits of entanglement.
Prior to our work, only a relational separation was known.
arXiv Detail & Related papers (2023-06-02T01:49:39Z) - Communication complexity of entanglement assisted multi-party
computation [11.820804392113294]
We consider a multi-party computation problem with $n$ players, where players $2, dots, n$ need to communicate appropriate information to player 1.
We exhibit a quantum protocol (with complexity $(n-1) log n$ bits) and a classical protocol (with complexity $(n-1)2 (log n2$) bits)
This demonstrates that our quantum protocol is strictly better than classical protocols.
arXiv Detail & Related papers (2023-05-08T03:10:08Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Classical Verification of Quantum Computations in Linear Time [2.3465488122819123]
We give a new CVQC protocol with complexity $O(poly(kappa)|C|)$, which is significantly faster than existing protocols.
Our protocol is secure in the quantum random oracle model [arXiv:1008.0931] assuming the existence of noisy trapdoor claw-free functions.
We also give a new classical channel remote state preparation protocol for states in $|+thetarangle=frac1sqrt2(|0rangle+eithetapi/4|1rangle):
arXiv Detail & Related papers (2022-02-28T18:05:53Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Matrix Discrepancy from Quantum Communication [13.782852293291494]
We develop a novel connection between discrepancy minimization and (quantum) communication complexity.
We show that for every collection of symmetric $n times n$ $A_1,ldots,A_n$ with $|A_i| leq 1$ and $|A_i|_F leq n1/4$ there exist signs $x in pm 1n such that the maximum eigenvalue of $sum_i leq n x_i A_i$ is at most
arXiv Detail & Related papers (2021-10-19T16:51:11Z) - Optimal State Transfer and Entanglement Generation in Power-law
Interacting Systems [0.5592394503914488]
We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state.
The protocol has a wide range of applications, including in quantum sensing, quantum computing, and preparation of topologically ordered states.
arXiv Detail & Related papers (2020-10-06T18:00:02Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z) - Communication Cost of Quantum Processes [49.281159740373326]
A common scenario in distributed computing involves a client who asks a server to perform a computation on a remote computer.
An important problem is to determine the minimum amount of communication needed to specify the desired computation.
We analyze the total amount of (classical and quantum) communication needed by a server in order to accurately execute a quantum process chosen by a client.
arXiv Detail & Related papers (2020-02-17T08:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.