Convolutional Neural Networks applied to sky images for short-term solar
irradiance forecasting
- URL: http://arxiv.org/abs/2005.11246v1
- Date: Fri, 22 May 2020 15:57:39 GMT
- Title: Convolutional Neural Networks applied to sky images for short-term solar
irradiance forecasting
- Authors: Quentin Paletta, Joan Lasenby
- Abstract summary: This work presents preliminary results on the application of deep Convolutional Neural Networks for 2 to 20 min irradiance forecasting.
We evaluate the models on a set of irradiance measurements and corresponding sky images collected in Palaiseau (France) over 8 months with a temporal resolution of 2 min.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the advances in the field of solar energy, improvements of solar
forecasting techniques, addressing the intermittent electricity production,
remain essential for securing its future integration into a wider energy
supply. A promising approach to anticipate irradiance changes consists of
modeling the cloud cover dynamics from ground taken or satellite images. This
work presents preliminary results on the application of deep Convolutional
Neural Networks for 2 to 20 min irradiance forecasting using hemispherical sky
images and exogenous variables. We evaluate the models on a set of irradiance
measurements and corresponding sky images collected in Palaiseau (France) over
8 months with a temporal resolution of 2 min. To outline the learning of neural
networks in the context of short-term irradiance forecasting, we implemented
visualisation techniques revealing the types of patterns recognised by trained
algorithms in sky images. In addition, we show that training models with past
samples of the same day improves their forecast skill, relative to the smart
persistence model based on the Mean Square Error, by around 10% on a 10 min
ahead prediction. These results emphasise the benefit of integrating previous
same-day data in short-term forecasting. This, in turn, can be achieved through
model fine tuning or using recurrent units to facilitate the extraction of
relevant temporal features from past data.
Related papers
- Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
Score-based diffusion models offer a new approach to modeling probability distributions over many dependent variables.
We apply the technique to day-ahead solar irradiance forecasts by generating many samples from a diffusion model trained to super-resolve numerical weather predictions.
arXiv Detail & Related papers (2023-02-01T01:32:25Z) - Omnivision forecasting: combining satellite observations with sky images
for improved intra-hour solar energy predictions [0.0]
Integration of intermittent renewable energy sources into electric grids is challenging.
Short-term changes in electricity production caused by occluding clouds can be predicted at different time scales.
In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework.
arXiv Detail & Related papers (2022-06-07T11:52:09Z) - Seamless lightning nowcasting with recurrent-convolutional deep learning [2.175391729845306]
A deep learning model is presented to nowcast the occurrence of lightning at a five-minute time resolution 60 minutes into the future.
The model is based on a recurrent-contemporalal architecture that allows it to recognize and predict the development of convection.
The predictions are performed on a stationary grid, without use of storm object detection and tracking.
arXiv Detail & Related papers (2022-03-15T12:54:17Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Benchmarking of Deep Learning Irradiance Forecasting Models from Sky
Images -- an in-depth Analysis [0.0]
We train four commonly used Deep Learning architectures to forecast solar irradiance from sequences of hemispherical sky images.
Results show that encodingtemporal aspects greatly improved the predictions with 10 min Forecast Skill reaching 20.4% on the test year.
We conclude that, with a common setup, Deep Learning models tend to behave just as a'very smart persistence model', temporally aligned with the persistence model while mitigating its most penalising errors.
arXiv Detail & Related papers (2021-02-01T09:31:14Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.