Learning Morphological Feature Perturbations for Calibrated
Semi-Supervised Segmentation
- URL: http://arxiv.org/abs/2203.10196v1
- Date: Sat, 19 Mar 2022 00:10:18 GMT
- Title: Learning Morphological Feature Perturbations for Calibrated
Semi-Supervised Segmentation
- Authors: Mou-Cheng Xu, Yu-Kun Zhou, Chen Jin, Stefano B Blumberg, Frederick J
Wilson, Marius deGroot, Daniel C. Alexander, Neil P. Oxtoby and Joseph Jacob
- Abstract summary: We propose a consistency-driven semi-supervised segmentation framework called MisMatch.
MisMatch produces predictions that are invariant to learnt feature perturbations.
It outperforms state-of-the-art semi-supervised methods on two segmentation tasks.
- Score: 5.082221236136389
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose MisMatch, a novel consistency-driven semi-supervised segmentation
framework which produces predictions that are invariant to learnt feature
perturbations. MisMatch consists of an encoder and a two-head decoders. One
decoder learns positive attention to the foreground regions of interest (RoI)
on unlabelled images thereby generating dilated features. The other decoder
learns negative attention to the foreground on the same unlabelled images
thereby generating eroded features. We then apply a consistency regularisation
on the paired predictions. MisMatch outperforms state-of-the-art
semi-supervised methods on a CT-based pulmonary vessel segmentation task and a
MRI-based brain tumour segmentation task. In addition, we show that the
effectiveness of MisMatch comes from better model calibration than its
supervised learning counterpart.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - SegMatch: A semi-supervised learning method for surgical instrument
segmentation [10.223709180135419]
We propose SegMatch, a semi supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images.
SegMatch builds on FixMatch, a widespread semi supervised classification pipeline combining consistency regularization and pseudo labelling.
Our results demonstrate that adding unlabelled data for training purposes allows us to surpass the performance of fully supervised approaches.
arXiv Detail & Related papers (2023-08-09T21:30:18Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - DU-Net based Unsupervised Contrastive Learning for Cancer Segmentation
in Histology Images [14.90768557126822]
The framework involves an effective contrastive learning scheme for extracting distinctive visual representations for segmentation.
Experiments demonstrate competitive performance in segmentation even better than some popular supervised networks.
arXiv Detail & Related papers (2022-06-17T14:04:31Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
We propose a semi-supervised segmentation network based on contrastive learning.
In contrast to the previous state-of-the-art, we introduce a contrastive learning form of dual-view training.
Our proposed method outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms consistently.
arXiv Detail & Related papers (2022-03-29T01:40:26Z) - MisMatch: Calibrated Segmentation via Consistency on Differential
Morphological Feature Perturbations with Limited Labels [5.500466607182699]
Semi-supervised learning is a promising paradigm to address the issue of label scarcity in medical imaging.
MisMatch is a semi-supervised segmentation framework based on the consistency between paired predictions.
arXiv Detail & Related papers (2021-10-23T09:22:41Z) - Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical
Image Segmentation [68.9233942579956]
We propose a novel mutual consistency network (MC-Net+) to exploit the unlabeled hard regions for semi-supervised medical image segmentation.
The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions.
We compare the segmentation results of the MC-Net+ with five state-of-the-art semi-supervised approaches on three public medical datasets.
arXiv Detail & Related papers (2021-09-21T04:47:42Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.