DU-Net based Unsupervised Contrastive Learning for Cancer Segmentation
in Histology Images
- URL: http://arxiv.org/abs/2206.08791v1
- Date: Fri, 17 Jun 2022 14:04:31 GMT
- Title: DU-Net based Unsupervised Contrastive Learning for Cancer Segmentation
in Histology Images
- Authors: Yilong Li, Yaqi Wang, Huiyu Zhou, Huaqiong Wang, Gangyong Jia, Qianni
Zhang
- Abstract summary: The framework involves an effective contrastive learning scheme for extracting distinctive visual representations for segmentation.
Experiments demonstrate competitive performance in segmentation even better than some popular supervised networks.
- Score: 14.90768557126822
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we introduce an unsupervised cancer segmentation framework for
histology images. The framework involves an effective contrastive learning
scheme for extracting distinctive visual representations for segmentation. The
encoder is a Deep U-Net (DU-Net) structure that contains an extra fully
convolution layer compared to the normal U-Net. A contrastive learning scheme
is developed to solve the problem of lacking training sets with high-quality
annotations on tumour boundaries. A specific set of data augmentation
techniques are employed to improve the discriminability of the learned colour
features from contrastive learning. Smoothing and noise elimination are
conducted using convolutional Conditional Random Fields. The experiments
demonstrate competitive performance in segmentation even better than some
popular supervised networks.
Related papers
- Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations.
We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods.
We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset.
arXiv Detail & Related papers (2024-08-04T14:30:14Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
We propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation.
Our approach involves identifying Super-pixels by Felzenszwalb's algorithm and performing local contrastive learning using a novel contrastive sampling loss.
arXiv Detail & Related papers (2023-04-06T22:43:13Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
We propose a method to synthesize for PCa histopathology images by learning the geometrical relationship between different disease labels.
We use a weakly supervised segmentation approach that uses Gleason score to segment the diseased regions.
The resulting segmentation map is used to train a Shape Restoration Network (ShaRe-Net) to predict missing mask segments.
arXiv Detail & Related papers (2021-10-01T13:47:07Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - CaCL: Class-aware Codebook Learning for Weakly Supervised Segmentation
on Diffuse Image Patterns [9.22349617343802]
We propose a novel class-aware codebook learning (CaCL) algorithm to perform weakly supervised learning for diffuse image patterns.
Specifically, the CaCL algorithm is deployed to segment protein expressed brush border regions from histological images of human duodenum.
arXiv Detail & Related papers (2020-11-02T07:47:10Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
We develop a semi-supervised learning framework based on a teacher-student fashion for organ and lesion segmentation.
We show our model is robust to the quality of bounding box and achieves comparable performance compared with full-supervised learning methods.
arXiv Detail & Related papers (2020-10-23T07:58:20Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.