論文の概要: Multi-view Multi-behavior Contrastive Learning in Recommendation
- arxiv url: http://arxiv.org/abs/2203.10576v1
- Date: Sun, 20 Mar 2022 15:13:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 15:16:26.241962
- Title: Multi-view Multi-behavior Contrastive Learning in Recommendation
- Title(参考訳): 勧告におけるマルチビューマルチビヘイビアコントラスト学習
- Authors: Yiqing Wu, Ruobing Xie, Yongchun Zhu, Xiang Ao, Xin Chen, Xu Zhang,
Fuzhen Zhuang, Leyu Lin, Qing He
- Abstract要約: マルチビヘイビアレコメンデーション(MBR)は、目標行動のパフォーマンスを改善するために、複数の振る舞いを共同で検討することを目的としている。
本稿では,新しいマルチビヘイビア・マルチビュー・コントラスト学習勧告フレームワークを提案する。
- 参考スコア(独自算出の注目度): 52.42597422620091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-behavior recommendation (MBR) aims to jointly consider multiple
behaviors to improve the target behavior's performance. We argue that MBR
models should: (1) model the coarse-grained commonalities between different
behaviors of a user, (2) consider both individual sequence view and global
graph view in multi-behavior modeling, and (3) capture the fine-grained
differences between multiple behaviors of a user. In this work, we propose a
novel Multi-behavior Multi-view Contrastive Learning Recommendation (MMCLR)
framework, including three new CL tasks to solve the above challenges,
respectively. The multi-behavior CL aims to make different user single-behavior
representations of the same user in each view to be similar. The multi-view CL
attempts to bridge the gap between a user's sequence-view and graph-view
representations. The behavior distinction CL focuses on modeling fine-grained
differences of different behaviors. In experiments, we conduct extensive
evaluations and ablation tests to verify the effectiveness of MMCLR and various
CL tasks on two real-world datasets, achieving SOTA performance over existing
baselines. Our code will be available on
\url{https://github.com/wyqing20/MMCLR}
- Abstract(参考訳): マルチビヘイビアレコメンデーション(MBR)は、目標行動のパフォーマンスを改善するために、複数の振る舞いを共同で検討することを目的としている。
MBRモデルは,(1)ユーザの異なる行動間の粗粒度の共通性をモデル化し,(2)多行動モデリングにおける個々のシーケンスビューとグローバルグラフビューの両方を考慮し,(3)ユーザの複数の行動間の微粒度の相違を捉える。
本稿では、上記の課題を解決するための3つの新しいclタスクを含む、新しいマルチビューコントラスト学習レコメンデーション(mmclr)フレームワークを提案する。
マルチビヘイビアclは、各ビューにおける同一ユーザの異なるユーザシングルビヘイビア表現を類似させることを目的としている。
マルチビューclは、ユーザのシーケンスビューとグラフビュー表現の間のギャップを橋渡ししようとする。
行動区別CLは、異なる行動のきめ細かい相違をモデル化することに焦点を当てている。
実験では,MMCLRと各種CLタスクの2つの実世界のデータセット上での有効性を検証し,既存のベースライン上でSOTA性能を実現する。
私たちのコードは \url{https://github.com/wyqing20/MMCLR} で利用可能です。
関連論文リスト
- Knowledge-Aware Multi-Intent Contrastive Learning for Multi-Behavior Recommendation [6.522900133742931]
マルチ行動レコメンデーションは、ビュー、カートの追加、購入など、さまざまな行動に基づいたより正確な選択を提供する。
本稿では,KAMCL(Knowledge-Aware Multi-Intent Contrastive Learning)モデルを提案する。
このモデルは、インテントを構築するために知識グラフ内の関係を利用し、より正確なレコメンデーションを達成するためのインテントの観点から、ユーザのマルチビヘイビア間の接続をマイニングすることを目的としている。
論文 参考訳(メタデータ) (2024-04-18T08:39:52Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
マルチタイプの行動(例えば、クリック、カートの追加、購入など)は、ほとんどの現実世界のレコメンデーションシナリオに広く存在する。
最先端のマルチ振る舞いモデルは、すべての歴史的相互作用を入力として区別しない振る舞い依存を学習する。
本稿では,多様な行動に対する共有的・行動特異的な関心を学習するための,多目的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-03T05:28:14Z) - Learning Visual Representation from Modality-Shared Contrastive
Language-Image Pre-training [88.80694147730883]
本稿では,多種多様なモダリティ共有コントラスト言語-画像事前学習(MS-CLIP)フレームワークについて検討する。
学習条件下では、視覚と言語信号のためのほとんど統一されたエンコーダが、より多くのパラメータを分離する他のすべてのバリエーションより優れていることが観察された。
我々のアプローチは、24の下流視覚タスクのコレクションに基づいて、線形探索においてバニラCLIPを1.6ポイント上回ります。
論文 参考訳(メタデータ) (2022-07-26T05:19:16Z) - Contrastive Meta Learning with Behavior Multiplicity for Recommendation [42.15990960863924]
優れたインフォームドレコメンデーションフレームワークは、ユーザが関心のあるアイテムを識別するだけでなく、さまざまなオンラインプラットフォームの収益にも貢献できる。
本稿では,コントラストメタラーニング(Contrastive Meta Learning, CML)を提案する。
提案手法は,様々な最先端のレコメンデーション手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-02-17T08:51:24Z) - Empowering General-purpose User Representation with Full-life Cycle
Behavior Modeling [11.698166058448555]
本稿では,この課題に対処するために,フルライフサイクルユーザ表現モデル(LURM)と呼ばれる新しいフレームワークを提案する。
LURMは2つのカスケードサブモデルで構成されている: (I) Bag-of-Interests (BoI) は、任意の期間におけるユーザの振る舞いを超高次元のスパースベクトル(例:105)にエンコードする。
SMENは、ユーザ関心の異なる側面を学習できる新しいマルチアンカーモジュールの恩恵を受け、ほぼ次元の削減を実現している。
論文 参考訳(メタデータ) (2021-10-20T08:24:44Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Graph Meta Network for Multi-Behavior Recommendation [24.251784947151755]
本稿では,マルチビヘイビアパターンモデリングをメタラーニングパラダイムに組み込むために,グラフメタネットワークを用いたマルチビヘイビアレコメンデーションフレームワークを提案する。
我々の開発したMB-GMNは、型に依存した行動表現を明らかにする能力により、ユーザ-イテム相互作用学習を増強する。
論文 参考訳(メタデータ) (2021-10-08T08:38:27Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Multi-Interactive Attention Network for Fine-grained Feature Learning in
CTR Prediction [48.267995749975476]
クリックスルー率(ctr)予測シナリオでは、ユーザのシーケンシャルな動作を利用してユーザの関心を捉える。
既存の手法は主にユーザの行動に注意を払っているが、CTR予測には必ずしも適していない。
マルチインタラクティブ・アテンション・ネットワーク (MIAN) を提案し, 各種微細な特徴間の潜在関係を総合的に抽出する。
論文 参考訳(メタデータ) (2020-12-13T05:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。