論文の概要: Empowering General-purpose User Representation with Full-life Cycle
Behavior Modeling
- arxiv url: http://arxiv.org/abs/2110.11337v4
- Date: Wed, 12 Jul 2023 08:48:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 20:45:26.104996
- Title: Empowering General-purpose User Representation with Full-life Cycle
Behavior Modeling
- Title(参考訳): フルライフサイクル行動モデリングによる汎用ユーザ表現の強化
- Authors: Bei Yang, Jie Gu, Ke Liu, Xiaoxiao Xu, Renjun Xu, Qinghui Sun, Hong
Liu
- Abstract要約: 本稿では,この課題に対処するために,フルライフサイクルユーザ表現モデル(LURM)と呼ばれる新しいフレームワークを提案する。
LURMは2つのカスケードサブモデルで構成されている: (I) Bag-of-Interests (BoI) は、任意の期間におけるユーザの振る舞いを超高次元のスパースベクトル(例:105)にエンコードする。
SMENは、ユーザ関心の異なる側面を学習できる新しいマルチアンカーモジュールの恩恵を受け、ほぼ次元の削減を実現している。
- 参考スコア(独自算出の注目度): 11.698166058448555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User Modeling plays an essential role in industry. In this field,
task-agnostic approaches, which generate general-purpose representation
applicable to diverse downstream user cognition tasks, is a promising direction
being more valuable and economical than task-specific representation learning.
With the rapid development of Internet service platforms, user behaviors have
been accumulated continuously. However, existing general-purpose user
representation researches have little ability for full-life cycle modeling on
extremely long behavior sequences since user registration. In this study, we
propose a novel framework called full- Life cycle User Representation Model
(LURM) to tackle this challenge. Specifically, LURM consists of two cascaded
sub-models: (I) Bag-of-Interests (BoI) encodes user behaviors in any time
period into a sparse vector with super-high dimension (e.g., 10^5); (II)
Self-supervised Multi-anchor Encoder Network (SMEN) maps sequences of BoI
features to multiple low-dimensional user representations. Specially, SMEN
achieves almost lossless dimensionality reduction, benefiting from a novel
multi-anchor module which can learn different aspects of user interests.
Experiments on several benchmark datasets show that our approach outperforms
state-of-the-art general-purpose representation methods.
- Abstract(参考訳): ユーザモデリングは業界において重要な役割を担います。
この分野では、多様な下流ユーザ認知タスクに適用可能な汎用表現を生成するタスク非依存アプローチが、タスク固有の表現学習よりも有益で経済的であることを示す。
インターネットサービスプラットフォームの急速な発展に伴い、ユーザ行動は継続的に蓄積されてきた。
しかし、既存の汎用ユーザ表現研究は、ユーザ登録以来、非常に長い行動系列をフルライフサイクルでモデル化する能力はほとんどない。
本研究では,この課題に対処するために,フルライフサイクルユーザ表現モデル(LURM)と呼ばれる新しいフレームワークを提案する。
特に、lurmは2つのカスケードされたサブモデルで構成されている: (i)bag-of-interests (boi) 任意の期間におけるユーザの振る舞いを超高次元(例えば10^5)のスパースベクトルに符号化する; (ii) 自己教師付きマルチアンカーエンコーダネットワーク (smen) boiの特徴のシーケンスを複数の低次元ユーザ表現にマッピングする。
特にSMENは、ユーザ興味の異なる側面を学習できる新しいマルチアンカーモジュールの恩恵を受けながら、ほぼ損失のない次元削減を実現している。
いくつかのベンチマークデータセットの実験により、我々の手法は最先端の汎用表現法よりも優れていることが示された。
関連論文リスト
- Adaptive Learning on User Segmentation: Universal to Specific Representation via Bipartite Neural Interaction [15.302921887305283]
本稿では,情報ボトルネックを通じて汎用ユーザ表現を学習する新しい学習フレームワークを提案する。
次に、ニューラルネットワークを通じてセグメンテーション特化あるいはタスク特化表現をマージし、学習する。
提案手法は2つのオープンソースベンチマーク、2つのオフラインビジネスデータセットで評価され、ユーザのCVRを予測するために2つのオンラインマーケティングアプリケーションにデプロイされる。
論文 参考訳(メタデータ) (2024-09-23T12:02:23Z) - All in One Framework for Multimodal Re-identification in the Wild [58.380708329455466]
オールインワン(AIO)という,ReID導入のためのマルチモーダル学習パラダイム
AIOは、凍結したトレーニング済みのビッグデータをエンコーダとして利用し、追加の微調整なしに効果的なマルチモーダル検索を可能にする。
クロスモーダルおよびマルチモーダルReIDの実験により、AIOは様々なモーダルデータを扱うだけでなく、困難な状況でも優れていることが明らかになった。
論文 参考訳(メタデータ) (2024-05-08T01:04:36Z) - Generalized User Representations for Transfer Learning [6.953653891411339]
本稿では,大規模レコメンデーションシステムにおけるユーザ表現のための新しいフレームワークを提案する。
提案手法は,表現学習と伝達学習を組み合わせた2段階の手法を用いる。
提案するフレームワークは,代替手法と比較して,インフラコストを大幅に削減できることを示す。
論文 参考訳(メタデータ) (2024-03-01T15:05:21Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - Learning Large-scale Universal User Representation with Sparse Mixture
of Experts [1.2722697496405464]
複数のタスクから高品質なユーザ表現を得るための汎用フレームワーク SUPERMOE を提案する。
具体的には、ユーザ動作シーケンスをMoE変換器で符号化することで、モデル容量を数十億のパラメータに増やすことができる。
複数のタスクにまたがる学習においてシーソー現象に対処するために,タスクインジケータを用いた新たな損失関数を設計する。
論文 参考訳(メタデータ) (2022-07-11T06:19:03Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - Multi-view Multi-behavior Contrastive Learning in Recommendation [52.42597422620091]
マルチビヘイビアレコメンデーション(MBR)は、目標行動のパフォーマンスを改善するために、複数の振る舞いを共同で検討することを目的としている。
本稿では,新しいマルチビヘイビア・マルチビュー・コントラスト学習勧告フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-20T15:13:28Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Interest-oriented Universal User Representation via Contrastive Learning [28.377233340976197]
我々は2つの視点から普遍的なユーザ表現を改善することを試みる。
表現モデルトレーニングを導くために、対照的な自己教師型学習パラダイムが提示される。
新規な多目的抽出モジュールが提示される。
論文 参考訳(メタデータ) (2021-09-18T07:42:00Z) - Exploiting Behavioral Consistence for Universal User Representation [11.290137806288191]
我々は普遍的ユーザ表現モデルの開発に注力する。
得られた普遍表現には豊富な情報が含まれることが予想される。
行動データを普遍表現にエンコードする自己監視型ユーザモデリングネットワーク(SUMN)を提案する。
論文 参考訳(メタデータ) (2020-12-11T06:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。