Towards Clinical Practice: Design and Implementation of Convolutional
Neural Network-Based Assistive Diagnosis System for COVID-19 Case Detection
from Chest X-Ray Images
- URL: http://arxiv.org/abs/2203.10596v1
- Date: Sun, 20 Mar 2022 16:44:20 GMT
- Title: Towards Clinical Practice: Design and Implementation of Convolutional
Neural Network-Based Assistive Diagnosis System for COVID-19 Case Detection
from Chest X-Ray Images
- Authors: Daniel Kvak, Marian Bendik, Anna Chromcova
- Abstract summary: This study presents a real-world implementation of a convolutional neural network (CNN) based Carebot Covid app to detect COVID-19 from chest X-ray (CXR) images.
The results of this study show that the deep learning model based on DenseNet and ResNet architecture can detect SARS-CoV-2 from CXR images with precision of 0.981, recall of 0.962 and AP of 0.993.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the critical tools for early detection and subsequent evaluation of
the incidence of lung diseases is chest radiography. This study presents a
real-world implementation of a convolutional neural network (CNN) based Carebot
Covid app to detect COVID-19 from chest X-ray (CXR) images. Our proposed model
takes the form of a simple and intuitive application. Used CNN can be deployed
as a STOW-RS prediction endpoint for direct implementation into DICOM viewers.
The results of this study show that the deep learning model based on DenseNet
and ResNet architecture can detect SARS-CoV-2 from CXR images with precision of
0.981, recall of 0.962 and AP of 0.993.
Related papers
- Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19 (coronavirus) is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
The virus was first identified in mid-December 2019 in the Hubei province of Wuhan, China.
It has spread throughout the planet with more than 75.5 million confirmed cases and more than 1.67 million deaths.
arXiv Detail & Related papers (2022-01-24T21:12:25Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
coronavirus disease (COVID-19) has been declared a worldwide pandemic.
One potential solution to detect COVID-19 is by analyzing the chest X-ray images using Deep Learning (DL) models.
In this study, we propose a novel randomly CNN architecture for the recognition of COVID-19.
The proposed CNN model yields encouraging results with 94% and 99% of accuracy for COVIDx and enhanced COVID-19 dataset, respectively.
arXiv Detail & Related papers (2021-05-17T23:40:37Z) - FLANNEL: Focal Loss Based Neural Network Ensemble for COVID-19 Detection [61.04937460198252]
We construct the X-ray imaging data from 2874 patients with four classes: normal, bacterial pneumonia, non-COVID-19 viral pneumonia, and COVID-19.
To identify COVID-19, we propose a Focal Loss Based Neural Ensemble Network (FLANNEL)
FLANNEL consistently outperforms baseline models on COVID-19 identification task in all metrics.
arXiv Detail & Related papers (2020-10-30T03:17:31Z) - COVID-19 Classification of X-ray Images Using Deep Neural Networks [36.99143569437537]
The purpose of this study is to create and evaluate a machine learning model for diagnosis of COVID-19.
A machine learning model was built using a pre-trained deep learning model (ReNet50) and enhanced by data augmentation and lung segmentation.
The model was evaluated using accuracy, sensitivity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and of the precision-recall (P-R) curve.
arXiv Detail & Related papers (2020-10-03T13:57:08Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - COVID-CXNet: Detecting COVID-19 in Frontal Chest X-ray Images using Deep
Learning [6.098524160574895]
In most of the patients, a chest x-ray contains abnormalities, such as consolidation, which are the results of COVID-19 viral pneumonia.
Research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset.
arXiv Detail & Related papers (2020-06-16T21:31:02Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - A Cascaded Learning Strategy for Robust COVID-19 Pneumonia Chest X-Ray
Screening [11.250464234368478]
We introduce a comprehensive screening platform for the COVID-19 (a.k.a., SARS-CoV-2) pneumonia.
The proposed AI-based system works on chest x-ray (CXR) images to predict whether a patient is infected with the COVID-19 disease.
arXiv Detail & Related papers (2020-04-24T15:44:51Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.