Immersive Text Game and Personality Classification
- URL: http://arxiv.org/abs/2203.10621v1
- Date: Sun, 20 Mar 2022 18:37:03 GMT
- Title: Immersive Text Game and Personality Classification
- Authors: Wanshui Li, Yifan Bai, Jiaxuan Lu, Kexin Yi
- Abstract summary: Immersive Text Game allows the player to choose a story and a character, and interact with other characters in the story in an immersive manner.
The game is based on several latest models, including text generation language model, information extraction model, commonsense reasoning model, and psychology evaluation model.
- Score: 1.9171404264679484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We designed and built a game called \textit{Immersive Text Game}, which
allows the player to choose a story and a character, and interact with other
characters in the story in an immersive manner of dialogues. The game is based
on several latest models, including text generation language model, information
extraction model, commonsense reasoning model, and psychology evaluation model.
In the past, similar text games usually let players choose from limited actions
instead of answering on their own, and not every time what characters said are
determined by the player. Through the combination of these models and elaborate
game mechanics and modes, the player will find some novel experiences as driven
through the storyline.
Related papers
- Understanding Players as if They Are Talking to the Game in a Customized Language: A Pilot Study [3.4333699338998693]
This pilot study explores the application of language models (LMs) to model game event sequences.
We transform raw event data into textual sequences and pretraining a Longformer model on this data.
The results demonstrate the potential of self-supervised LMs in enhancing game design and personalization without relying on ground-truth labels.
arXiv Detail & Related papers (2024-10-24T09:59:10Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models [0.0]
We introduce a dialogue filler framework that utilizes large language models (LLMs) to generate dynamic and contextually appropriate character interactions.
We test this framework within the environments of Final Fantasy VII Remake and Pokemon.
This study aims to assist developers in crafting more nuanced filler dialogues, thereby enriching player immersion and enhancing the overall RPG experience.
arXiv Detail & Related papers (2024-07-29T19:12:18Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
We present CharacterGLM, a series of models built upon ChatGLM, with model sizes ranging from 6B to 66B parameters.
Our CharacterGLM is designed for generating Character-based Dialogues (CharacterDial), which aims to equip a conversational AI system with character customization for satisfying people's inherent social desires and emotional needs.
arXiv Detail & Related papers (2023-11-28T14:49:23Z) - NarrativePlay: Interactive Narrative Understanding [27.440721435864194]
We introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives in an immersive environment.
We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives.
NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations.
arXiv Detail & Related papers (2023-10-02T13:24:00Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Infusing Commonsense World Models with Graph Knowledge [89.27044249858332]
We study the setting of generating narratives in an open world text adventure game.
A graph representation of the underlying game state can be used to train models that consume and output both grounded graph representations and natural language descriptions and actions.
arXiv Detail & Related papers (2023-01-13T19:58:27Z) - Ontologically Faithful Generation of Non-Player Character Dialogues [26.88182907706951]
KNUDGE (KNowledge Constrained User-NPC Dialogue GEneration) requires models to produce trees of dialogue between video game characters.
KNUDGE is constructed from side quest dialogues drawn directly from game data of Obsidian Entertainment's The Outer Worlds.
arXiv Detail & Related papers (2022-12-20T19:48:10Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences.
We train a contrastive bi-encoder model to align stories with human critiques, building a general purpose preference model.
We further fine-tune the contrastive reward model using a prompt-learning technique to increase story generation robustness.
arXiv Detail & Related papers (2022-10-14T13:21:33Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
We present the first study to explore whether machines can understand and generate dialogue in stories.
We propose two new tasks including Masked Dialogue Generation and Dialogue Speaker Recognition.
We show the difficulty of the proposed tasks by testing existing models with automatic and manual evaluation on DialStory.
arXiv Detail & Related papers (2022-09-18T10:19:04Z) - Telling Stories through Multi-User Dialogue by Modeling Character
Relations [14.117921448623342]
This paper explores character-driven story continuation, in which the story emerges through characters' first- and second-person narration as well as dialogue.
We hypothesize that a multi-task model that trains on character dialogue plus character relationship information improves transformer-based story continuation.
A series of ablations lend evidence to our hypothesis, showing that our multi-task model using character relationships improves story continuation accuracy over strong baselines.
arXiv Detail & Related papers (2021-05-31T15:39:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.