論文の概要: DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2203.10729v1
- Date: Mon, 21 Mar 2022 04:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 16:43:40.002135
- Title: DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking
- Title(参考訳): DSRRTracker: 注意に基づくシームズ多目的追跡のための動的検索領域リファインメント
- Authors: JiaXu Wan, Hong Zhang, Jin Zhang, Yuan Ding, Yifan Yang, Yan Li and
Xuliang Li
- Abstract要約: 本稿では,ガウスフィルタにインスパイアされた動的探索領域改良モジュールを用いたエンドツーエンドMOT法を提案する。
提案手法は,最先端の性能を妥当な速度で達成することができる。
- 参考スコア(独自算出の注目度): 19.71446442285389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many multi-object tracking (MOT) methods follow the framework of "tracking by
detection", which associates the target objects-of-interest based on the
detection results. However, due to the separate models for detection and
association, the tracking results are not optimal.Moreover, the speed is
limited by some cumbersome association methods to achieve high tracking
performance. In this work, we propose an end-to-end MOT method, with a Gaussian
filter-inspired dynamic search region refinement module to dynamically filter
and refine the search region by considering both the template information from
the past frames and the detection results from the current frame with little
computational burden, and a lightweight attention-based tracking head to
achieve the effective fine-grained instance association. Extensive experiments
and ablation study on MOT17 and MOT20 datasets demonstrate that our method can
achieve the state-of-the-art performance with reasonable speed.
- Abstract(参考訳): 多くのマルチオブジェクト追跡(MOT)手法は、検出結果に基づいて対象オブジェクトを関連付ける「検出による追跡」という枠組みに従う。
しかし, 検出とアソシエーションの分離モデルにより, 追跡結果は最適ではないため, 高トラッキング性能を実現するために, いくつかの面倒なアソシエーション手法によって速度が制限される。
本研究では,過去のフレームからのテンプレート情報と,現在のフレームからの検出結果の両方を計算負担が少なく考慮し,検索領域を動的にフィルタリング・精査するガウスフィルタインスパイアされた動的検索領域改良モジュールを用いたエンドツーエンドMOT法と,効率的なインスタンス関連を実現するための軽量な注目型トラッキングヘッドを提案する。
MOT17とMOT20データセットの大規模な実験とアブレーション実験により,本手法が最先端の性能を妥当な速度で達成できることが実証された。
関連論文リスト
- Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
従来の検出によるトラッキングと、クエリによる新たなトラッキングだ。
本稿では,学習可能なアソシエータによって達成されるトラッキング・バイ・検出・クエリーのパラダイムを提案する。
トラッキング・バイ・クエリーモデルと比較すると、LAIDは特に訓練効率の高い競合追跡精度を達成している。
論文 参考訳(メタデータ) (2024-11-09T14:38:08Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
2次元画像から目標の相対的な深さを求めるための擬似深度推定法を提案する。
次に,得られた深度情報を用いて,高密度なターゲットセットを複数のスパースなターゲットサブセットに変換するディープカスケードマッチング(DCM)アルゴリズムを設計する。
擬似深度法とDCM戦略をデータアソシエーションプロセスに統合することにより、SparseTrackと呼ばれる新しいトラッカーを提案する。
論文 参考訳(メタデータ) (2023-06-08T14:36:10Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
漁業活動における漁獲監視の目的は、映像から魚の標的をリアルタイムで検出し、追跡し、分類することである。
本稿では,既存の観測中心追跡アルゴリズムに基づく新しいMOT手法を提案する。
本手法は,海洋魚種群およびMOT17種群において,一様外観の追跡目標の性能向上と最先端技術の向上を図っている。
論文 参考訳(メタデータ) (2023-04-10T18:55:10Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
特徴学習と関係モデリングを統合した新しい一ストリーム追跡(OSTrack)フレームワークを提案する。
このようにして、相互誘導により識別的目標指向特徴を動的に抽出することができる。
OSTrackは、複数のベンチマークで最先端のパフォーマンスを実現しており、特に、ワンショットトラッキングベンチマークのGOT-10kでは印象的な結果を示している。
論文 参考訳(メタデータ) (2022-03-22T18:37:11Z) - On the detection-to-track association for online multi-object tracking [30.883165972525347]
トラックの歴史的外観距離をインクリメンタルなガウス混合モデル(IGMM)でモデル化するハイブリッドトラックアソシエーションアルゴリズムを提案する。
3つのMOTベンチマークによる実験結果から,HTAが目標識別性能を向上し,追跡速度に多少の妥協を施すことが確認された。
論文 参考訳(メタデータ) (2021-07-01T14:44:12Z) - Dynamic Attention guided Multi-Trajectory Analysis for Single Object
Tracking [62.13213518417047]
動的注意誘導型マルチ軌道追跡戦略を考案し,さらにダイナミクスを導入することを提案する。
特に、複数のターゲットテンプレートを含む動的外観モデルを構築し、それぞれが新しいフレーム内のターゲットを特定するのに独自の注意を払っています。
シーケンス全体にまたがった後、マルチ軌道選択ネットワークを導入し、トラッキング性能を向上させた最適な軌道を見つけます。
論文 参考訳(メタデータ) (2021-03-30T05:36:31Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
本稿では,複数の物体の運動パラメータを推定し,共同検出と関連付けを行うディープ・モーション・モデリング・ネットワーク(DMM-Net)を提案する。
DMM-Netは、人気の高いUA-DETRACチャレンジで12.80 @120+ fpsのPR-MOTAスコアを達成した。
また,車両追跡のための大規模な公開データセットOmni-MOTを合成し,精密な接地トルースアノテーションを提供する。
論文 参考訳(メタデータ) (2020-08-20T08:05:33Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT)法は、トラッキング・バイ・検出のパラダイムに従っている。
混み合ったシーンに適したMOTパラダイムであるトラッキング・バイ・カウントを提案する。
論文 参考訳(メタデータ) (2020-07-18T19:51:53Z) - End-to-End Multi-Object Tracking with Global Response Map [23.755882375664875]
画像シーケンス/映像を入力とし、学習対象の位置と追跡対象を直接出力する、完全にエンドツーエンドのアプローチを提案する。
具体的には,提案した多目的表現戦略により,グローバル応答マップをフレーム上で正確に生成することができる。
MOT16 と MOT17 のベンチマークによる実験結果から,提案したオンライントラッカーは,いくつかのトラッキング指標において最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-07-13T12:30:49Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。