論文の概要: End-to-End Multi-Object Tracking with Global Response Map
- arxiv url: http://arxiv.org/abs/2007.06344v1
- Date: Mon, 13 Jul 2020 12:30:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 23:25:01.370483
- Title: End-to-End Multi-Object Tracking with Global Response Map
- Title(参考訳): グローバル応答マップを用いたエンドツーエンド多対象追跡
- Authors: Xingyu Wan, Jiakai Cao, Sanping Zhou, Jinjun Wang
- Abstract要約: 画像シーケンス/映像を入力とし、学習対象の位置と追跡対象を直接出力する、完全にエンドツーエンドのアプローチを提案する。
具体的には,提案した多目的表現戦略により,グローバル応答マップをフレーム上で正確に生成することができる。
MOT16 と MOT17 のベンチマークによる実験結果から,提案したオンライントラッカーは,いくつかのトラッキング指標において最先端の性能を達成した。
- 参考スコア(独自算出の注目度): 23.755882375664875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing Multi-Object Tracking (MOT) approaches follow the
Tracking-by-Detection paradigm and the data association framework where objects
are firstly detected and then associated. Although deep-learning based method
can noticeably improve the object detection performance and also provide good
appearance features for cross-frame association, the framework is not
completely end-to-end, and therefore the computation is huge while the
performance is limited. To address the problem, we present a completely
end-to-end approach that takes image-sequence/video as input and outputs
directly the located and tracked objects of learned types. Specifically, with
our introduced multi-object representation strategy, a global response map can
be accurately generated over frames, from which the trajectory of each tracked
object can be easily picked up, just like how a detector inputs an image and
outputs the bounding boxes of each detected object. The proposed model is fast
and accurate. Experimental results based on the MOT16 and MOT17 benchmarks show
that our proposed on-line tracker achieved state-of-the-art performance on
several tracking metrics.
- Abstract(参考訳): 既存のほとんどのマルチオブジェクトトラッキング(mot)アプローチは、トラッキングバイ検出パラダイムとデータアソシエーションフレームワークに従い、まずオブジェクトを検出して関連づける。
ディープラーニングベースの手法は,オブジェクト検出性能を顕著に向上させると同時に,フレーム間関連に優れた外観機能を提供することができるが,フレームワークの完全なエンドツーエンドではない。
この問題に対処するために,画像シーケンス/映像を入力とし,学習対象の位置と追跡対象を直接出力する,エンドツーエンドのアプローチを提案する。
具体的には,新たに導入されたマルチオブジェクト表現戦略により,検出者が画像の入力や検出対象のバウンディングボックスの出力のように,追跡対象の軌跡を容易に拾い上げることのできるフレーム上で,グローバル応答マップを高精度に生成することができる。
提案モデルは高速で正確である。
MOT16 と MOT17 のベンチマークによる実験結果から,提案したオンライントラッカーは,いくつかのトラッキング指標において最先端の性能を達成した。
関連論文リスト
- Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
従来の検出によるトラッキングと、クエリによる新たなトラッキングだ。
本稿では,学習可能なアソシエータによって達成されるトラッキング・バイ・検出・クエリーのパラダイムを提案する。
トラッキング・バイ・クエリーモデルと比較すると、LAIDは特に訓練効率の高い競合追跡精度を達成している。
論文 参考訳(メタデータ) (2024-11-09T14:38:08Z) - Matching Anything by Segmenting Anything [109.2507425045143]
我々は、堅牢なインスタンスアソシエーション学習のための新しい手法であるMASAを提案する。
MASAは、徹底的なデータ変換を通じてインスタンスレベルの対応を学習する。
完全アノテートされたドメイン内ビデオシーケンスでトレーニングした最先端の手法よりも,MASAの方が優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-06-06T16:20:07Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOTは、オブジェクトの外観と運動の特徴と幾何学的情報を組み合わせて、より正確なトラッキングを提供する新しいフレームワークである。
実験結果から, HOTA, IDF1, MOTAの計測値において, 最先端手法と比較して顕著な性能を示した。
論文 参考訳(メタデータ) (2023-09-03T04:58:12Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - Cannot See the Forest for the Trees: Aggregating Multiple Viewpoints to
Better Classify Objects in Videos [36.28269135795851]
本稿では,トラックレットに含まれる複数の視点から情報を集約することで,トラックレットの分類精度を向上させる集合分類器を提案する。
ResNet-101上のQDTrackにメソッドをアタッチするだけで、TAOの検証とテストセットで19.9%と15.7%のTrackAP_50という新しい最先端を実現できます。
論文 参考訳(メタデータ) (2022-06-05T07:51:58Z) - DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking [13.104037155691644]
本稿では,ガウスフィルタにインスパイアされた動的探索領域改良モジュールを用いたエンドツーエンドMOT法を提案する。
提案手法は,最先端の性能を妥当な速度で達成することができる。
論文 参考訳(メタデータ) (2022-03-21T04:14:06Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
本稿では,複数の物体検出器の出力をアンサンブルすることで,画像データ上の境界ボックスの検出性能と精度を向上させる手法を提案する。
本研究では,2段階追跡に基づく検出精度向上手法を提案することで,映像データに拡張する。
論文 参考訳(メタデータ) (2021-02-09T12:38:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。