Efficient Remote Photoplethysmography with Temporal Derivative Modules
and Time-Shift Invariant Loss
- URL: http://arxiv.org/abs/2203.10882v1
- Date: Mon, 21 Mar 2022 11:08:06 GMT
- Title: Efficient Remote Photoplethysmography with Temporal Derivative Modules
and Time-Shift Invariant Loss
- Authors: Joaquim Comas, Adria Ruiz and Federico Sukno
- Abstract summary: We present a lightweight neural model for remote heart rate estimation.
We focus on the efficient-temporal learning of facial photoplethysmography.
Compared to existing models, our approach shows competitive accuracy with a much lower number of parameters and lower computational cost.
- Score: 6.381149074212898
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a lightweight neural model for remote heart rate estimation
focused on the efficient spatio-temporal learning of facial
photoplethysmography (PPG) based on i) modelling of PPG dynamics by
combinations of multiple convolutional derivatives, and ii) increased
flexibility of the model to learn possible offsets between the video facial PPG
and the ground truth. PPG dynamics are modelled by a Temporal Derivative Module
(TDM) constructed by the incremental aggregation of multiple convolutional
derivatives, emulating a Taylor series expansion up to the desired order.
Robustness to ground truth offsets is handled by the introduction of TALOS
(Temporal Adaptive LOcation Shift), a new temporal loss to train learning-based
models. We verify the effectiveness of our model by reporting accuracy and
efficiency metrics on the public PURE and UBFC-rPPG datasets. Compared to
existing models, our approach shows competitive heart rate estimation accuracy
with a much lower number of parameters and lower computational cost.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Multi-fidelity reduced-order surrogate modeling [5.346062841242067]
We present a new data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates.
We show that the onset of instabilities and transients are well captured by this surrogate technique.
arXiv Detail & Related papers (2023-09-01T08:16:53Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
We introduce a grid-independent model learning partial differential equations (PDEs) from noisy and partial observations on irregular grids.
We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel design encoder for improved data efficiency and grid independence.
arXiv Detail & Related papers (2023-07-09T06:53:59Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
Recent Machine Learning (ML) models have shown new promises in capturing important dynamics in high-resolution signals.
This study shows that significant information is often lost in the low-resolution down-sampled features.
We propose a new approach, which combines the strengths of advanced time-series sequence modeling and state-of-the-art neural PDE solvers.
arXiv Detail & Related papers (2023-02-16T06:13:01Z) - Enhancing Deep Traffic Forecasting Models with Dynamic Regression [15.31488551912888]
This paper introduces a dynamic regression (DR) framework to enhance existing traffic forecasting models by structured learning for the residual process.
We evaluate the effectiveness of the proposed framework on deep traffic forecasting models using both speed and flow datasets.
arXiv Detail & Related papers (2023-01-17T01:12:44Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
We propose a modular machine learning pipeline for ranking predictions on temporal panel datasets.
The modularity of the pipeline allows the use of different models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks.
Online learning techniques, which require no retraining of models, can be used post-prediction to enhance the results.
arXiv Detail & Related papers (2022-12-30T17:19:00Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.