A Neural PDE Solver with Temporal Stencil Modeling
- URL: http://arxiv.org/abs/2302.08105v1
- Date: Thu, 16 Feb 2023 06:13:01 GMT
- Title: A Neural PDE Solver with Temporal Stencil Modeling
- Authors: Zhiqing Sun, Yiming Yang, Shinjae Yoo
- Abstract summary: Recent Machine Learning (ML) models have shown new promises in capturing important dynamics in high-resolution signals.
This study shows that significant information is often lost in the low-resolution down-sampled features.
We propose a new approach, which combines the strengths of advanced time-series sequence modeling and state-of-the-art neural PDE solvers.
- Score: 44.97241931708181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulation of non-linear partial differential equations plays a
crucial role in modeling physical science and engineering phenomena, such as
weather, climate, and aerodynamics. Recent Machine Learning (ML) models trained
on low-resolution spatio-temporal signals have shown new promises in capturing
important dynamics in high-resolution signals, under the condition that the
models can effectively recover the missing details. However, this study shows
that significant information is often lost in the low-resolution down-sampled
features. To address such issues, we propose a new approach, namely Temporal
Stencil Modeling (TSM), which combines the strengths of advanced time-series
sequence modeling (with the HiPPO features) and state-of-the-art neural PDE
solvers (with learnable stencil modeling). TSM aims to recover the lost
information from the PDE trajectories and can be regarded as a temporal
generalization of classic finite volume methods such as WENO. Our experimental
results show that TSM achieves the new state-of-the-art simulation accuracy for
2-D incompressible Navier-Stokes turbulent flows: it significantly outperforms
the previously reported best results by 19.9% in terms of the highly-correlated
duration time and reduces the inference latency into 80%. We also show a strong
generalization ability of the proposed method to various out-of-distribution
turbulent flow settings. Our code is available at
"https://github.com/Edward-Sun/TSM-PDE".
Related papers
- A scalable generative model for dynamical system reconstruction from neuroimaging data [5.777167013394619]
Data-driven inference of the generative dynamics underlying a set of observed time series is of growing interest in machine learning.
Recent breakthroughs in training techniques for state space models (SSMs) specifically geared toward dynamical systems reconstruction (DSR) enable to recover the underlying system.
We propose a novel algorithm that solves this problem and scales exceptionally well with model dimensionality and filter length.
arXiv Detail & Related papers (2024-11-05T09:45:57Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Machine-Learned Closure of URANS for Stably Stratified Turbulence: Connecting Physical Timescales & Data Hyperparameters of Deep Time-Series Models [0.0]
We develop time-series machine learning (ML) methods for closure modeling of the Unsteady Reynolds Averaged Navier Stokes equations.
We consider decaying SST which are homogeneous and stably stratified by a uniform density gradient.
We find that the ratio of the timescales of the minimum information required by the ML models to accurately capture the dynamics of the SST corresponds to the Reynolds number of the flow.
arXiv Detail & Related papers (2024-04-24T18:58:00Z) - PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers [40.097474800631]
Time-dependent partial differential equations (PDEs) are ubiquitous in science and engineering.
Deep neural network based surrogates have gained increased interest.
arXiv Detail & Related papers (2023-08-10T17:53:05Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.