論文の概要: ELIC: Efficient Learned Image Compression with Unevenly Grouped
Space-Channel Contextual Adaptive Coding
- arxiv url: http://arxiv.org/abs/2203.10886v1
- Date: Mon, 21 Mar 2022 11:19:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 17:28:28.567656
- Title: ELIC: Efficient Learned Image Compression with Unevenly Grouped
Space-Channel Contextual Adaptive Coding
- Title(参考訳): elic:不均等な空間チャネル適応符号化を用いた効率的な学習画像圧縮
- Authors: Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei Qin, Yan Wang
- Abstract要約: 本研究では,最先端の速度と圧縮能力を実現するための効率的なモデルであるELICを提案する。
優れたパフォーマンスで、提案モデルは極めて高速なプレビューデコーディングとプログレッシブデコーディングもサポートする。
- 参考スコア(独自算出の注目度): 9.908820641439368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, learned image compression techniques have achieved remarkable
performance, even surpassing the best manually designed lossy image coders.
They are promising to be large-scale adopted. For the sake of practicality, a
thorough investigation of the architecture design of learned image compression,
regarding both compression performance and running speed, is essential. In this
paper, we first propose uneven channel-conditional adaptive coding, motivated
by the observation of energy compaction in learned image compression. Combining
the proposed uneven grouping model with existing context models, we obtain a
spatial-channel contextual adaptive model to improve the coding performance
without damage to running speed. Then we study the structure of the main
transform and propose an efficient model, ELIC, to achieve state-of-the-art
speed and compression ability. With superior performance, the proposed model
also supports extremely fast preview decoding and progressive decoding, which
makes the coming application of learning-based image compression more
promising.
- Abstract(参考訳): 近年、学習した画像圧縮技術は、手作業で設計した失われた画像コーダよりも優れた性能を達成している。
彼らは大規模採用を約束している。
実用化のためには,圧縮性能と実行速度の両方について,学習画像圧縮のアーキテクチャ設計に関する徹底的な調査が不可欠である。
本稿では,まず,学習画像圧縮におけるエネルギー圧縮の観測による不均一なチャネル条件適応符号化を提案する。
提案する不均一グルーピングモデルと既存のコンテキストモデルを組み合わせた空間チャネルコンテキスト適応モデルにより,実行速度を損なうことなく符号化性能を向上させる。
そこで本研究では,本変換の構造を調査し,最先端の速度と圧縮能力を実現するための効率的なモデルであるELICを提案する。
高速なプレビューデコーディングとプログレッシブデコーディングもサポートしており、学習ベースの画像圧縮の今後の応用をより有望なものにしている。
関連論文リスト
- A Training-Free Defense Framework for Robust Learned Image Compression [48.41990144764295]
本研究では,学習した画像圧縮モデルの敵攻撃に対する堅牢性について検討する。
簡単な画像変換関数をベースとした無訓練防御手法を提案する。
論文 参考訳(メタデータ) (2024-01-22T12:50:21Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Efficient Contextformer: Spatio-Channel Window Attention for Fast
Context Modeling in Learned Image Compression [1.9249287163937978]
学習画像に対する変換器に基づく自己回帰的文脈モデルである、効率的なコンテキストフォーマ(eContextformer)を導入する。
並列コンテキストモデリングのためのパッチワイド、チェッカー、チャンネルワイドのグルーピングテクニックを融合する。
モデル複雑性が145倍、デコード速度が210Cx向上し、Kodak、CLI、Tecnickデータセット上での平均ビット節約を実現している。
論文 参考訳(メタデータ) (2023-06-25T16:29:51Z) - HFLIC: Human Friendly Perceptual Learned Image Compression with
Reinforced Transform [16.173583505483272]
現在の学習ベースの画像圧縮法は、人間に優しい圧縮を犠牲にし、長い復号時間を必要とすることが多い。
本稿では、既存の画像圧縮モデルのバックボーンネットワークとロス関数の強化を提案し、人間の知覚と効率の改善に焦点をあてる。
論文 参考訳(メタデータ) (2023-05-12T14:35:27Z) - A Unified Image Preprocessing Framework For Image Compression [5.813935823171752]
そこで我々は,既存のコーデックの性能向上を図るために,Kuchenと呼ばれる統合された画像圧縮前処理フレームワークを提案する。
このフレームワークは、ハイブリッドデータラベリングシステムと、パーソナライズされた前処理をシミュレートする学習ベースのバックボーンで構成されている。
その結果,我々の統合前処理フレームワークによって最適化された現代のコーデックは,常に最先端圧縮の効率を向上することを示した。
論文 参考訳(メタデータ) (2022-08-15T10:41:00Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
空間特徴変換(SFT arXiv:1804.02815)に基づく多目的深部画像圧縮ネットワークを提案する。
本モデルは,任意の画素単位の品質マップによって制御される単一モデルを用いて,幅広い圧縮速度をカバーしている。
提案するフレームワークにより,様々なタスクに対してタスク対応の画像圧縮を行うことができる。
論文 参考訳(メタデータ) (2021-08-21T17:30:06Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
本稿では,改良されたインバーチブルを提案する。
非可逆ニューラルネットワーク(INN)によるネットワークは、情報損失問題を大幅に軽減し、圧縮性を向上する。
Kodak, CLIC, Tecnick のデータセットによる実験結果から,本手法は既存の学習画像圧縮法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-08-08T17:32:10Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
本稿では,3つの新しい技術に基づくEDIC(Efficient Deep Image Compression)という統合フレームワークを提案する。
具体的には、学習に基づく画像圧縮のためのオートエンコーダスタイルのネットワークを設計する。
EDIC法は,映像圧縮性能を向上させるために,Deep Video Compression (DVC) フレームワークに容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-02-09T14:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。