論文の概要: TinyMLOps: Operational Challenges for Widespread Edge AI Adoption
- arxiv url: http://arxiv.org/abs/2203.10923v1
- Date: Mon, 21 Mar 2022 12:36:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 19:23:11.379481
- Title: TinyMLOps: Operational Challenges for Widespread Edge AI Adoption
- Title(参考訳): TinyMLOps: 広範なエッジAI採用のための運用上の課題
- Authors: Sam Leroux, Pieter Simoens, Meelis Lootus, Kartik Kathore, Akshay
Sharma
- Abstract要約: エッジデバイス上でアプリケーションを運用する場合、TinyML実践者が考慮する必要があるいくつかの課題をリストアップする。
私たちは、アプリケーションの監視や管理、MLOpsプラットフォームの共通機能といったタスクに集中し、エッジデプロイメントの分散特性によってそれらがいかに複雑であるかを示します。
- 参考スコア(独自算出の注目度): 4.110617007156225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying machine learning applications on edge devices can bring clear
benefits such as improved reliability, latency and privacy but it also
introduces its own set of challenges. Most works focus on the limited
computational resources of edge platforms but this is not the only bottleneck
standing in the way of widespread adoption. In this paper we list several other
challenges that a TinyML practitioner might need to consider when
operationalizing an application on edge devices. We focus on tasks such as
monitoring and managing the application, common functionality for a MLOps
platform, and show how they are complicated by the distributed nature of edge
deployment. We also discuss issues that are unique to edge applications such as
protecting a model's intellectual property and verifying its integrity.
- Abstract(参考訳): エッジデバイスに機械学習アプリケーションをデプロイすることは、信頼性やレイテンシ、プライバシの改善といった明確なメリットをもたらすが、独自の課題も導入する。
ほとんどの研究はエッジプラットフォームの限られた計算資源に焦点を当てているが、広く採用されている唯一のボトルネックではない。
本稿では、エッジデバイス上でアプリケーションを運用する場合、TinyML実践者が考慮すべき課題をいくつか挙げる。
私たちは、アプリケーションの監視や管理、MLOpsプラットフォームの共通機能といったタスクに集中し、エッジデプロイメントの分散特性によってそれらがいかに複雑であるかを示します。
また,モデルの知的財産権保護や整合性検証など,エッジアプリケーション特有の課題についても論じる。
関連論文リスト
- Galaxy: A Resource-Efficient Collaborative Edge AI System for In-situ Transformer Inference [19.60655813679882]
トランスフォーマーベースのモデルは、エッジに多数の強力なインテリジェントなアプリケーションをアンロックした。
従来のデプロイメントアプローチでは、推論ワークロードをリモートクラウドサーバにオフロードする。
我々は、異種エッジデバイスにまたがるリソース壁を壊す、協調的なエッジAIシステムであるGalaxyを提案する。
論文 参考訳(メタデータ) (2024-05-27T15:01:04Z) - Real-time Threat Detection Strategies for Resource-constrained Devices [1.4815508281465273]
本稿では,ルータ内のDNSトンネリング攻撃を効果的に処理するエンド・ツー・エンド・プロセスを提案する。
我々は、MLモデルをトレーニングするためにステートレスな機能を利用することと、ネットワーク構成から独立して選択した機能を利用することで、非常に正確な結果が得られることを実証した。
さまざまな環境にまたがる組み込みデバイスに最適化されたこの慎重に構築されたモデルのデプロイにより、最小のレイテンシでDNSチューニングされた攻撃検出が可能になった。
論文 参考訳(メタデータ) (2024-03-22T10:02:54Z) - A General Framework for Learning from Weak Supervision [93.89870459388185]
本稿では、新しいアルゴリズムを用いて、弱監督(GLWS)から学習するための一般的な枠組みを紹介する。
GLWSの中心は期待最大化(EM)の定式化であり、様々な弱い監督源を順応的に収容している。
また,EM計算要求を大幅に単純化する高度なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:48:50Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
本稿では、画像とテキストで検索可能な表現から、運転決定を提供することができる、エンドツーエンドのオープンセット(環境/シーン)自律運転を適用するアプローチを提案する。
当社のアプローチでは, 多様なテストにおいて非並列的な結果を示すと同時に, アウト・オブ・ディストリビューションの状況において, はるかに高いロバスト性を実現している。
論文 参考訳(メタデータ) (2023-10-26T17:56:35Z) - A review of TinyML [0.0]
TinyMLの組み込み機械学習の概念は、このような多様性を、通常のハイエンドアプローチからローエンドアプリケーションへと押し上げようとしている。
TinyMLは、機械学習、ソフトウェア、ハードウェアの統合において、急速に拡大する学際的なトピックである。
本稿では,TinyMLがいくつかの産業分野,その障害,その将来的な範囲にどのようなメリットをもたらすのかを考察する。
論文 参考訳(メタデータ) (2022-11-05T06:02:08Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
本調査では,エッジコンピューティングを対象としたディープラーニングモデルの設計自動化技術について述べる。
これは、有効性、軽量性、計算コストの観点からモデルの習熟度を定量化するために一般的に使用される主要なメトリクスの概要と比較を提供する。
この調査は、ディープモデル設計自動化技術の最先端の3つのカテゴリをカバーしている。
論文 参考訳(メタデータ) (2022-08-22T12:12:43Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
本稿では,Huawei Cloudのエッジクラウド共同プロトタイプであるAuto-Splitの技法と技術実践について述べる。
私たちの知る限りでは、Deep Neural Network(DNN)分割機能を提供する既存の産業製品はありません。
論文 参考訳(メタデータ) (2021-08-30T08:03:29Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - TinyML for Ubiquitous Edge AI [0.0]
TinyMLは、極低電力域(mW範囲以下)で動作する組み込み(マイクロコントローラ駆動)デバイス上でのディープラーニングアルゴリズムの実現に重点を置いている。
TinyMLは、電力効率が高く、コンパクトなディープニューラルネットワークモデル、ソフトウェアフレームワークのサポート、組み込みハードウェアの設計における課題に対処する。
本報告では,この分野の拡大を導く主要な課題と技術的実現要因について論じる。
論文 参考訳(メタデータ) (2021-02-02T02:04:54Z) - TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems [5.188829601887422]
組み込みデバイス上でのディープラーニング推論は、小さな組み込みデバイスが一様であることから、無数のアプリケーションで溢れている分野である。
組み込みデバイス上でのディープラーニング推論は、小さな組み込みデバイスが一様であることから、無数のアプリケーションで溢れている分野である。
組み込みシステム上でディープラーニングモデルを実行するための,オープンソースのML推論フレームワークであるLite Microを紹介した。
論文 参考訳(メタデータ) (2020-10-17T00:44:30Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
オブジェクトの動きと親和性モデルを単一のネットワークに統一する新しいMOTフレームワークUMAを提案する。
UMAは、単一物体追跡とメートル法学習をマルチタスク学習により統合された三重項ネットワークに統合する。
我々は,タスク認識機能学習を促進するために,タスク固有のアテンションモジュールを装備する。
論文 参考訳(メタデータ) (2020-03-25T09:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。