Optimizing Trajectories for Highway Driving with Offline Reinforcement
Learning
- URL: http://arxiv.org/abs/2203.10949v1
- Date: Mon, 21 Mar 2022 13:13:08 GMT
- Title: Optimizing Trajectories for Highway Driving with Offline Reinforcement
Learning
- Authors: Branka Mirchevska, Moritz Werling, Joschka Boedecker
- Abstract summary: We propose a Reinforcement Learning-based approach to autonomous driving.
We compare the performance of our agent against four other highway driving agents.
We demonstrate that our offline trained agent, with randomly collected data, learns to drive smoothly, achieving as close as possible to the desired velocity, while outperforming the other agents.
- Score: 11.970409518725491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implementing an autonomous vehicle that is able to output feasible, smooth
and efficient trajectories is a long-standing challenge. Several approaches
have been considered, roughly falling under two categories: rule-based and
learning-based approaches. The rule-based approaches, while guaranteeing safety
and feasibility, fall short when it comes to long-term planning and
generalization. The learning-based approaches are able to account for long-term
planning and generalization to unseen situations, but may fail to achieve
smoothness, safety and the feasibility which rule-based approaches ensure.
Hence, combining the two approaches is an evident step towards yielding the
best compromise out of both. We propose a Reinforcement Learning-based
approach, which learns target trajectory parameters for fully autonomous
driving on highways. The trained agent outputs continuous trajectory parameters
based on which a feasible polynomial-based trajectory is generated and
executed. We compare the performance of our agent against four other highway
driving agents. The experiments are conducted in the Sumo simulator, taking
into consideration various realistic, dynamically changing highway scenarios,
including surrounding vehicles with different driver behaviors. We demonstrate
that our offline trained agent, with randomly collected data, learns to drive
smoothly, achieving velocities as close as possible to the desired velocity,
while outperforming the other agents. Code, training data and details available
at: https://nrgit.informatik.uni-freiburg. de/branka.mirchevska/offline-rl-tp.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
Trajectory planning aims to produce a globally optimal route for Autonomous Passenger Vehicles.
Existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories.
We augment this model by higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk.
arXiv Detail & Related papers (2023-09-25T22:30:18Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - Generative Adversarial Imitation Learning for End-to-End Autonomous
Driving on Urban Environments [0.8122270502556374]
Generative Adversarial Imitation Learning (GAIL) can train policies without explicitly requiring to define a reward function.
We show that both of them are capable of imitating the expert trajectory from start to end after training ends.
arXiv Detail & Related papers (2021-10-16T15:04:13Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.