Collaborative Learning for Cyberattack Detection in Blockchain Networks
- URL: http://arxiv.org/abs/2203.11076v4
- Date: Mon, 6 May 2024 15:58:41 GMT
- Title: Collaborative Learning for Cyberattack Detection in Blockchain Networks
- Authors: Tran Viet Khoa, Do Hai Son, Dinh Thai Hoang, Nguyen Linh Trung, Tran Thi Thuy Quynh, Diep N. Nguyen, Nguyen Viet Ha, Eryk Dutkiewicz,
- Abstract summary: This article aims to study intrusion attacks and then develop a novel cyberattack detection framework to detect cyberattacks at the network layer of a blockchain network.
We propose a novel collaborative learning model that allows efficient deployment in the blockchain network to detect attacks.
Both intensive simulations and real-time experiments clearly show that our proposed intrusion detection framework can achieve an accuracy of up to 98.6% in detecting attacks.
- Score: 29.481124078876032
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This article aims to study intrusion attacks and then develop a novel cyberattack detection framework to detect cyberattacks at the network layer (e.g., Brute Password and Flooding of Transactions) of blockchain networks. Specifically, we first design and implement a blockchain network in our laboratory. This blockchain network will serve two purposes, i.e., to generate the real traffic data (including both normal data and attack data) for our learning models and to implement real-time experiments to evaluate the performance of our proposed intrusion detection framework. To the best of our knowledge, this is the first dataset that is synthesized in a laboratory for cyberattacks in a blockchain network. We then propose a novel collaborative learning model that allows efficient deployment in the blockchain network to detect attacks. The main idea of the proposed learning model is to enable blockchain nodes to actively collect data, learn the knowledge from data using the Deep Belief Network, and then share the knowledge learned from its data with other blockchain nodes in the network. In this way, we can not only leverage the knowledge from all the nodes in the network but also do not need to gather all raw data for training at a centralized node like conventional centralized learning solutions. Such a framework can also avoid the risk of exposing local data's privacy as well as excessive network overhead/congestion. Both intensive simulations and real-time experiments clearly show that our proposed intrusion detection framework can achieve an accuracy of up to 98.6% in detecting attacks.
Related papers
- Real-time Cyberattack Detection with Collaborative Learning for Blockchain Networks [29.481124078876032]
We propose an efficient collaborative cyberattack detection model to protect blockchain networks.
Our proposed detection model can detect attacks in the blockchain network with an accuracy of up to 97%.
arXiv Detail & Related papers (2024-07-04T15:39:49Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Collaborative Learning Framework to Detect Attacks in Transactions and Smart Contracts [26.70294159598272]
This paper presents a novel collaborative learning framework designed to detect attacks in blockchain transactions and smart contracts.
Our framework exhibits the capability to classify various types of blockchain attacks, including intricate attacks at the machine code level.
Our framework achieves a detection accuracy of approximately 94% through extensive simulations and 91% in real-time experiments with a throughput of over 2,150 transactions per second.
arXiv Detail & Related papers (2023-08-30T07:17:20Z) - A Survey on Blockchain-Based Federated Learning and Data Privacy [1.0499611180329802]
Federated learning is a decentralized machine learning paradigm that allows multiple clients to collaborate by leveraging local computational power and the models transmission.
On the other hand, federated learning has the drawback of data leakage due to the lack of privacy-preserving mechanisms employed during storage, transfer, and sharing.
This survey aims to compare the performance and security of various data privacy mechanisms adopted in blockchain-based federated learning architectures.
arXiv Detail & Related papers (2023-06-29T23:43:25Z) - SPIN: Simulated Poisoning and Inversion Network for Federated
Learning-Based 6G Vehicular Networks [9.494669823390648]
Vehicular networks have always faced data privacy preservation concerns.
The technique is quite vulnerable to model inversion and model poisoning attacks.
We propose simulated poisoning and inversion network (SPIN) that leverages the optimization approach for reconstructing data.
arXiv Detail & Related papers (2022-11-21T10:07:13Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak private details belonging to other parties.
Our attacks are effective across membership inference, attribute inference, and data extraction.
Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty protocols for machine learning.
arXiv Detail & Related papers (2022-03-31T18:06:28Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Privacy-Preserved Blockchain-Federated-Learning for Medical Image
Analysis Towards Multiple Parties [5.296010468961924]
This article designs a privacy-preserving framework based on federated learning and blockchain.
In the first step, we train the local model by using the capsule network for the segmentation and classification of the COVID-19 images.
In the second step, we secure the local model through the homomorphic encryption scheme.
arXiv Detail & Related papers (2021-04-22T07:32:04Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.