Real-time Cyberattack Detection with Collaborative Learning for Blockchain Networks
- URL: http://arxiv.org/abs/2407.04011v1
- Date: Thu, 4 Jul 2024 15:39:49 GMT
- Title: Real-time Cyberattack Detection with Collaborative Learning for Blockchain Networks
- Authors: Tran Viet Khoa, Do Hai Son, Dinh Thai Hoang, Nguyen Linh Trung, Tran Thi Thuy Quynh, Diep N. Nguyen, Nguyen Viet Ha, Eryk Dutkiewicz,
- Abstract summary: We propose an efficient collaborative cyberattack detection model to protect blockchain networks.
Our proposed detection model can detect attacks in the blockchain network with an accuracy of up to 97%.
- Score: 29.481124078876032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ever-increasing popularity of blockchain applications, securing blockchain networks plays a critical role in these cyber systems. In this paper, we first study cyberattacks (e.g., flooding of transactions, brute pass) in blockchain networks and then propose an efficient collaborative cyberattack detection model to protect blockchain networks. Specifically, we deploy a blockchain network in our laboratory to build a new dataset including both normal and attack traffic data. The main aim of this dataset is to generate actual attack data from different nodes in the blockchain network that can be used to train and test blockchain attack detection models. We then propose a real-time collaborative learning model that enables nodes in the network to share learning knowledge without disclosing their private data, thereby significantly enhancing system performance for the whole network. The extensive simulation and real-time experimental results show that our proposed detection model can detect attacks in the blockchain network with an accuracy of up to 97%.
Related papers
- A Novel Classification of Attacks on Blockchain Layers: Vulnerabilities, Attacks, Mitigations, and Research Directions [0.8540657305162735]
This survey proposes a novel classification of blockchain attacks and an in-depth investigation of blockchain data security.
We reveal the deep dynamics of these security concerns by closely investigating the fundamental causes of attacks at various blockchain tiers.
We also discuss the implications of quantum computing in blockchain and the weaknesses in the current technology that can be exploited in the future.
arXiv Detail & Related papers (2024-04-28T06:40:50Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Collaborative Learning Framework to Detect Attacks in Transactions and Smart Contracts [26.70294159598272]
This paper presents a novel collaborative learning framework designed to detect attacks in blockchain transactions and smart contracts.
Our framework exhibits the capability to classify various types of blockchain attacks, including intricate attacks at the machine code level.
Our framework achieves a detection accuracy of approximately 94% through extensive simulations and 91% in real-time experiments with a throughput of over 2,150 transactions per second.
arXiv Detail & Related papers (2023-08-30T07:17:20Z) - Protecting the Decentralized Future: An Exploration of Common Blockchain
Attacks and their Countermeasures [1.1499361198674167]
Rising number of security threats have attracted cybercriminals as a target.
This research aims to offer a thorough analysis of mitigating blockchain attacks.
The study also highlights how crucial it is to take into account the particular needs of every blockchain application.
arXiv Detail & Related papers (2023-06-20T20:56:06Z) - Block Hunter: Federated Learning for Cyber Threat Hunting in
Blockchain-based IIoT Networks [0.0]
We use Federated Learning (FL) to build a threat hunting framework called Block Hunter to automatically hunt for attacks in IIoT networks.
Our results prove the efficiency of the Block Hunter in detecting anomalous activities with high accuracy and minimum required bandwidth.
arXiv Detail & Related papers (2022-04-21T00:45:30Z) - Collaborative Learning for Cyberattack Detection in Blockchain Networks [29.481124078876032]
This article aims to study intrusion attacks and then develop a novel cyberattack detection framework to detect cyberattacks at the network layer of a blockchain network.
We propose a novel collaborative learning model that allows efficient deployment in the blockchain network to detect attacks.
Both intensive simulations and real-time experiments clearly show that our proposed intrusion detection framework can achieve an accuracy of up to 98.6% in detecting attacks.
arXiv Detail & Related papers (2022-03-21T15:55:41Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
We present a weapon detection system based on an ensemble of semantic Convolutional Neural Networks.
A set of simpler neural networks dedicated to specific tasks requires less computational resources and can be trained in parallel.
The overall output of the system given by the aggregation of the outputs of individual networks can be tuned by a user to trade-off false positives and false negatives.
arXiv Detail & Related papers (2020-02-11T13:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.