論文の概要: Transforming Model Prediction for Tracking
- arxiv url: http://arxiv.org/abs/2203.11192v1
- Date: Mon, 21 Mar 2022 17:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-22 17:22:21.711351
- Title: Transforming Model Prediction for Tracking
- Title(参考訳): 追跡のための変換モデル予測
- Authors: Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu Paul, Danda
Pani Paudel, Fisher Yu, Luc Van Gool
- Abstract要約: トランスフォーマーは、誘導バイアスの少ないグローバルな関係を捉え、より強力なターゲットモデルの予測を学ぶことができる。
提案したトラッカーをエンドツーエンドにトレーニングし、複数のトラッカーデータセットに関する総合的な実験を行うことで、その性能を検証する。
我々のトラッカーは3つのベンチマークで新しい技術状態を設定し、挑戦的なLaSOTデータセットで68.5%のAUCを達成した。
- 参考スコア(独自算出の注目度): 109.08417327309937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization based tracking methods have been widely successful by
integrating a target model prediction module, providing effective global
reasoning by minimizing an objective function. While this inductive bias
integrates valuable domain knowledge, it limits the expressivity of the
tracking network. In this work, we therefore propose a tracker architecture
employing a Transformer-based model prediction module. Transformers capture
global relations with little inductive bias, allowing it to learn the
prediction of more powerful target models. We further extend the model
predictor to estimate a second set of weights that are applied for accurate
bounding box regression. The resulting tracker relies on training and on test
frame information in order to predict all weights transductively. We train the
proposed tracker end-to-end and validate its performance by conducting
comprehensive experiments on multiple tracking datasets. Our tracker sets a new
state of the art on three benchmarks, achieving an AUC of 68.5% on the
challenging LaSOT dataset.
- Abstract(参考訳): 目標モデル予測モジュールを統合することで、最適化ベースの追跡手法が広く成功し、目的関数を最小化することで効果的なグローバル推論を提供する。
この帰納バイアスは貴重なドメイン知識を統合するが、トラッキングネットワークの表現性を制限する。
そこで本研究では,トランスフォーマティブモデル予測モジュールを用いたトラッカアーキテクチャを提案する。
トランスフォーマーは、誘導バイアスの少ないグローバルな関係を捉え、より強力なターゲットモデルの予測を学ぶことができる。
さらに、モデル予測器を拡張して、正確な境界ボックス回帰に適用される第2の重みを推定する。
結果として得られたトラッカーは、全ての重量をトランスダクティブに予測するために、トレーニングとテストフレーム情報に依存する。
提案するトラッカをエンドツーエンドでトレーニングし,複数の追跡データセットに対して包括的な実験を行い,その性能を検証する。
我々のトラッカーは3つのベンチマークで新しい技術状態を設定し、挑戦的なLaSOTデータセットで68.5%のAUCを達成した。
関連論文リスト
- RealTraj: Towards Real-World Pedestrian Trajectory Forecasting [10.332817296500533]
本稿では,軌道予測の現実的適用性を高める新しいフレームワークであるRealTrajを提案する。
Det2TrajFormerは、過去の検出を入力として、ノイズの追跡に不変な軌道予測モデルである。
従来のトラジェクトリ予測手法とは異なり,本手法では,地平線検出のみを用いてモデルを微調整し,コストのかかる個人IDアノテーションの必要性を著しく低減する。
論文 参考訳(メタデータ) (2024-11-26T12:35:26Z) - Robust Visual Tracking via Iterative Gradient Descent and Threshold Selection [4.978166837959101]
本稿では, 誤差ベクトルがガウス-ラプラシアン分布に従えば, 良好な性能が得られる新しい線形回帰推定器を提案する。
さらに、IGDTSを生成トラッカーに拡張し、IGDTS距離を適用してサンプルとモデル間のずれを測定する。
いくつかの難解な画像列の実験結果から,提案したトラッカーは既存のトラッカーより優れていた。
論文 参考訳(メタデータ) (2024-06-02T01:51:09Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Towards A Foundation Model For Trajectory Intelligence [0.0]
実世界のユーザチェックインデータを用いて,大規模軌跡モデルのトレーニング結果を示す。
提案手法は,マスク付き軌道モデルを用いてベースモデルを事前学習する,事前学習と微調整のパラダイムに従う。
私たちの経験分析では、600万人以上のユーザーが生成した20億以上のチェックインの包括的データセットを利用しています。
論文 参考訳(メタデータ) (2023-11-30T00:34:09Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - An End-to-End Framework of Road User Detection, Tracking, and Prediction
from Monocular Images [11.733622044569486]
我々はODTPと呼ばれる検出、追跡、軌道予測のためのエンドツーエンドのフレームワークを構築している。
検出結果に基づいて、トラジェクトリ予測器であるDCENet++を認識および訓練するために、最先端のオンラインマルチオブジェクト追跡モデルであるQD-3DTを採用している。
本研究では,自律運転に広く利用されているnuScenesデータセット上でのODTPの性能を評価する。
論文 参考訳(メタデータ) (2023-08-09T15:46:25Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。